Efficient Phase Segmentation of Light-Optical Microscopy Images of Highly Complex Microstructures Using a Correlative Approach in Combination with Deep Learning Techniques

相关 分割 显微镜 光学显微镜 人工智能 材料科学 微观结构 相(物质) 光学 计算机科学 模式识别(心理学) 计算机视觉 化学 物理 扫描电子显微镜 冶金 哲学 有机化学 语言学
作者
Björn-Ivo Bachmann,Martin Müller,Marie Stiefel,Dominik Britz,Thorsten Staudt,Frank Mücklich
出处
期刊:Metals [MDPI AG]
卷期号:14 (9): 1051-1051 被引量:2
标识
DOI:10.3390/met14091051
摘要

Reliable microstructure characterization is essential for establishing process–microstructure–property links and effective quality control. Traditional manual microstructure analysis often struggles with objectivity, reproducibility, and scalability, particularly in complex materials. Machine learning methods offer a promising alternative but are hindered by the challenge of assigning an accurate and consistent ground truth, especially for complex microstructures. This paper introduces a methodology that uses correlative microscopy—combining light optical microscopy, scanning electron microscopy, and electron backscatter diffraction (EBSD)—to create objective, reproducible pixel-by-pixel annotations for ML training. In a semi-automated manner, EBSD-based annotations are employed to generate an objective ground truth mask for training a semantic segmentation model for quantifying simple light optical micrographs. The training masks are directly derived from raw EBSD data using modern deep learning methods. By using EBSD-based annotations, which incorporate crystallographic and misorientation data, the correctness and objectivity of the training mask creation can be assured. The final approach is capable of reproducibly and objectively differentiating bainite and martensite in optical micrographs of complex quenched steels. Through the reduction in the microstructural evaluation to light optical micrographs as the simplest and most widely used method, this way of quantifying microstructures is characterized by high efficiency as well as good scalability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
导儿能不能上个院士完成签到,获得积分10
2秒前
小梧完成签到 ,获得积分10
2秒前
高高代珊完成签到 ,获得积分10
3秒前
汉堡包应助清修采纳,获得10
3秒前
5秒前
5秒前
5秒前
小蘑菇应助淡淡半莲采纳,获得10
5秒前
华仔应助yan1875采纳,获得30
7秒前
7秒前
8秒前
庞初南完成签到,获得积分10
9秒前
kk完成签到,获得积分20
9秒前
冬冬林完成签到,获得积分10
10秒前
jqw完成签到,获得积分10
10秒前
10秒前
10秒前
CipherSage应助疯狂的寻绿采纳,获得10
11秒前
keke完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
14秒前
15秒前
小乐发布了新的文献求助10
16秒前
keke发布了新的文献求助10
17秒前
17秒前
mouxq完成签到,获得积分10
17秒前
伞志强关注了科研通微信公众号
18秒前
量子星尘发布了新的文献求助10
19秒前
天天快乐应助赵十一采纳,获得10
19秒前
无极微光应助Yang采纳,获得20
20秒前
23秒前
明天就退学关注了科研通微信公众号
23秒前
彭于晏应助利用好采纳,获得10
24秒前
24秒前
howgoods完成签到 ,获得积分10
25秒前
充电宝应助ay采纳,获得10
26秒前
ZTF完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478171
求助须知:如何正确求助?哪些是违规求助? 4579955
关于积分的说明 14371401
捐赠科研通 4508224
什么是DOI,文献DOI怎么找? 2470523
邀请新用户注册赠送积分活动 1457329
关于科研通互助平台的介绍 1431287