Artificial Neural Networks (ANNs) and Machine Learning (ML) Modeling Employee Behavior with Management Towards the Economic Advancement of Workers

人工神经网络 人工智能 机器学习 计算机科学 工程类
作者
Chulhee Lee
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:16 (21): 9516-9516
标识
DOI:10.3390/su16219516
摘要

The role of employee behavior in organizations and their interaction with management is crucial in advancing the economic progress of workers. This study examines the impact of employee behavior and management practices on organizational performance and economic progress, using advanced artificial intelligence techniques to explore complex relationships and provide evidence-based strategies for sustainable workforce development. The research analyzes critical aspects such as job satisfaction, motivation, participation, and communication to uncover the underlying mechanisms that contribute to economic development. It recognizes the dynamic relationship between employees and management, confirming the central role of effective leadership, communication, and teamwork in achieving positive results. The study emphasizes that harmonious cooperation between employees and management is necessary to create a favorable work environment that contributes to the economic development of workers. It utilizes an artificial neural network (ANN) to better understand the interdependencies between different parameters and their effects within the framework of this ongoing project. The results contribute to the existing body of knowledge by providing practical implications for organizations seeking to optimize the employee–employer relationship and increase the overall workforce productivity. By understanding the complex dynamics between employee behavior and management practices, organizations can create a supportive environment that maximizes employee potential and contributes to sustainable economic growth. The findings demonstrate an accuracy of over 70%, indicating that enhancing job satisfaction and communication can significantly improve employee participation, productivity, and overall organizational performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WXP发布了新的文献求助30
1秒前
感动书文完成签到,获得积分10
1秒前
2秒前
Lucas应助不忘初心采纳,获得10
2秒前
ding应助lulu采纳,获得50
3秒前
CodeCraft应助ylr采纳,获得10
5秒前
7秒前
科研通AI5应助320me666采纳,获得10
8秒前
duanhuiyuan应助优美的口红采纳,获得30
8秒前
Sean_sy完成签到,获得积分10
8秒前
9秒前
无奈曼云发布了新的文献求助10
9秒前
左然然完成签到,获得积分10
10秒前
落叶为谁殇完成签到,获得积分10
11秒前
12秒前
忧虑的代容完成签到,获得积分10
13秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
ylr完成签到,获得积分10
15秒前
田様应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
simon_chou发布了新的文献求助10
16秒前
16秒前
英姑应助科研通管家采纳,获得10
16秒前
我是老大应助科研通管家采纳,获得10
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
852应助科研通管家采纳,获得10
16秒前
不忘初心发布了新的文献求助10
17秒前
大胆海瑶完成签到,获得积分10
18秒前
zhian完成签到,获得积分20
18秒前
22秒前
ssc完成签到,获得积分10
22秒前
22秒前
激情的凌青完成签到 ,获得积分10
23秒前
小猫来啦完成签到,获得积分10
23秒前
福娃哇完成签到 ,获得积分10
24秒前
25秒前
ylr发布了新的文献求助10
25秒前
25秒前
cdercder发布了新的文献求助10
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785749
求助须知:如何正确求助?哪些是违规求助? 3331166
关于积分的说明 10250472
捐赠科研通 3046615
什么是DOI,文献DOI怎么找? 1672143
邀请新用户注册赠送积分活动 801026
科研通“疑难数据库(出版商)”最低求助积分说明 759979