Sensitivity-analysis-guided Bayesian parameter estimation for neural mass models: Applications in epilepsy

灵敏度(控制系统) 贝叶斯概率 癫痫 计算机科学 估计理论 机器学习 人工智能 心理学 算法 神经科学 工程类 电子工程
作者
Narayan Puthanmadam Subramaniyam,Jari Hyttinen
出处
期刊:Physical review [American Physical Society]
卷期号:110 (4)
标识
DOI:10.1103/physreve.110.044208
摘要

It is well established that neural mass models (NMMs) can effectively simulate the mesoscopic and macroscopic dynamics of electroencephalography (EEG), including epileptic EEG. However, the use of NMMs to gain insight on the neuronal system by parameter estimation is hampered by their high dimensionality and the lack of knowledge on what NMM parameters can be reliably estimated. In this article, we analyze the parameter sensitivity of the Jansen and Rit NMM (JR NMM) in order to identify the most sensitive JR-NMM parameters for reliable parameter estimation from EEG data. We then propose a Bayesian approach for estimating the JR-NMM states and parameters based on an expectation-maximization algorithm combined with the unscented Kalman smoother (UKS EM). Global sensitivity analysis methods including the Morris method and the Sobol method are used to perform sensitivity analysis. Results from both the Morris and the Sobol method show that the average inhibitory synaptic gain, B, and the reciprocal of the time constant of the average inhibitory postsynaptic potentials, b, have a significant impact on the JR-NMM output along with having the least interaction with other model parameters. The UKS-EM method for estimating the parameters B and b is validated using simulations under varying levels of measurement noise. Finally we apply the UKS-EM algorithm to intracranial EEG data from 16 epileptic patients. Our results, both at individual and group level show that the parameters B and b change significantly between the preseizure and seizure period, and between the seizure and postseizure period, with the transition to seizure characterized by a decrease in the average B, and the high frequency activity in seizure characterized by an increase in b. These results establish a sensitivity analysis guided Bayesian parameter estimation as a powerful tool for reducing the parameter space of high-dimensional NMMs enabling reliable and efficient estimation of the most sensitive NMM parameters, with the potential for online and fast tracking of NMM parameters in applications such as seizure tracking and control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ziyingxia发布了新的文献求助10
1秒前
3秒前
Joaquin发布了新的文献求助10
3秒前
木瓜完成签到,获得积分10
3秒前
4秒前
欣慰蚂蚁完成签到,获得积分10
4秒前
桐桐应助shiyijin采纳,获得10
5秒前
7秒前
天天快乐应助pinkworld采纳,获得10
7秒前
Joaquin完成签到,获得积分10
10秒前
火星上仰完成签到,获得积分10
11秒前
11秒前
12秒前
Jeohurd发布了新的文献求助100
12秒前
13秒前
liz发布了新的文献求助10
13秒前
as1710549269完成签到,获得积分10
14秒前
Tobby发布了新的文献求助10
15秒前
华仔应助酷酷学采纳,获得10
15秒前
15秒前
YifanWang应助Survivor采纳,获得50
16秒前
若尘发布了新的文献求助10
16秒前
小林666发布了新的文献求助10
18秒前
JamesPei应助从不内卷采纳,获得10
18秒前
以戈完成签到,获得积分10
18秒前
18秒前
Lin123完成签到,获得积分10
19秒前
19秒前
秋蚓完成签到 ,获得积分10
20秒前
谨慎长颈鹿完成签到,获得积分10
20秒前
21秒前
21秒前
Jeohurd完成签到,获得积分10
22秒前
kgdzj发布了新的文献求助30
22秒前
诱导效应发布了新的文献求助10
22秒前
柒柒完成签到 ,获得积分10
24秒前
或许度发布了新的文献求助10
24秒前
陈文思完成签到 ,获得积分10
25秒前
JamesPei应助若尘采纳,获得10
26秒前
彭于晏应助若尘采纳,获得10
26秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4183070
求助须知:如何正确求助?哪些是违规求助? 3719077
关于积分的说明 11722190
捐赠科研通 3398413
什么是DOI,文献DOI怎么找? 1864644
邀请新用户注册赠送积分活动 922323
科研通“疑难数据库(出版商)”最低求助积分说明 833986