亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Metformin Efficacy in Improving Insulin Sensitivity Among Women With Polycystic Ovary Syndrome and Insulin Resistance: A Machine Learning Study

医学 多囊卵巢 二甲双胍 逻辑回归 机器学习 胰岛素抵抗 人工智能 置信区间 支持向量机 体质指数 接收机工作特性 内科学 胰岛素 计算机科学
作者
Jiani Fu,Yiwen Zhang,Xiaowen Cai,Yong Huang
出处
期刊:Endocrine Practice [Elsevier]
卷期号:30 (11): 1023-1030 被引量:6
标识
DOI:10.1016/j.eprac.2024.07.014
摘要

ObjectiveMetformin is clinically effective in treating polycystic ovary syndrome (PCOS) with insulin resistance (IR), while its efficacy varies among individuals. This study aims to develop a machine learning model to predict the efficacy of metformin in improving insulin sensitivity among women with PCOS and IR.MethodsThis is a retrospective analysis of a multicenter, randomized controlled trial involving 114 women diagnosed with PCOS and IR. All women received metformin treatment for 4 months. We incorporated 27 baseline clinical variables of the women into the construction of our machine learning model. We firstly compared 4 commonly used feature selection methods to screen valuable clinical variables. Then we used the valuable variables as inputs to evaluate the performance of 5 machine learning models, including k-Nearest Neighbors, Support Vector Machine, Logistic Regression, Random Forest, and Extreme Gradient Boosting, in predicting the efficacy of metformin.ResultsAmong the 5 machine learning models, Support Vector Machine performed the best with an area under the receiver operating characteristic curve of 0.781 (95% confidence interval [CI]: 0.772-0.791). The key predictive variables identified were homeostasis model assessment of insulin resistance, body mass index, and low-density lipoprotein cholesterol.ConclusionThe developed machine learning model could be applied to predict the efficacy of metformin in improving insulin sensitivity among women with PCOS and IR. The result could help doctors evaluate the efficacy of metformin in advance, optimize treatment plans, and thereby enhance overall clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
16秒前
22秒前
26秒前
34秒前
37秒前
42秒前
搜集达人应助Nature_Science采纳,获得10
49秒前
52秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
河狸完成签到,获得积分20
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
房天川完成签到 ,获得积分10
3分钟前
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
Owen应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
共享精神应助Nature_Science采纳,获得10
3分钟前
丘比特应助贪玩的雅霜采纳,获得10
3分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606575
求助须知:如何正确求助?哪些是违规求助? 4691070
关于积分的说明 14866893
捐赠科研通 4708433
什么是DOI,文献DOI怎么找? 2542956
邀请新用户注册赠送积分活动 1508222
关于科研通互助平台的介绍 1472280