HMS-TENet: A hierarchical multi-scale topological enhanced network based on EEG and EOG for driver vigilance estimation

警惕(心理学) 脑电图 计算机科学 人工智能 拓扑(电路) 心理学 神经科学 工程类 电气工程
作者
Meng Tang,Pengrui Li,Haokai Zhang,Liu Deng,Shihong Liu,Qingyuan Zheng,Hongli Chang,Changming Zhao,Manqing Wang,Guilai Zuo,Dongrui Gao
标识
DOI:10.1016/j.bmt.2024.10.003
摘要

Driving vigilance estimation is an important task for traffic safety. Nowadays, electroencephalography (EEG) and electrooculography (EOG) have made some achievements in vigilance estimation, but there are still some challenges: 1) The traditional approachs with direct multimodal fusion may face the problems of information redundancy and data dimensionality mismatch; 2) Capture key discriminative features during multimodal fusion without losing specific patterns to each modality. In order to solve the above problems, this paper proposes a approach with fusion of EEG and EOG features in split bands, which not only preserves the information about brain activities in different bands of EEG, but also effectively integrates the relevant information of EOG. On this basis, we further propose a hierarchical multi-scale topological enhanced network (HMS-TENet). This network first introduces a pyramid pooling structure (PPS) to capture contextual relationships from different discriminative perspectives. And then we design a selective convolutional structure (SCS) for adaptive sense-field selection, which enables us to mine the desired discriminative information in small-size features. In addition, we design a topology self-aware attention to enhance the learning of representations of complex topological relationships among EEG channels. Finally, the output of the model can be selected for both regression and classification tasks, providing higher flexibility and adaptability. We demonstrate the robustness, generalizability, and utility of the proposed method based on intra-subject and cross-subject experiments on the SEED-VIG public dataset. Codes are available at https://github.com/tangmeng28/HMS-TENet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
syx完成签到,获得积分10
刚刚
Hello应助小幸运采纳,获得10
刚刚
烂漫的白薇完成签到,获得积分10
1秒前
思源应助可爱语芹采纳,获得10
1秒前
1秒前
wwe发布了新的文献求助10
2秒前
2秒前
科目三应助hrt采纳,获得10
2秒前
盏盏发布了新的文献求助10
3秒前
3秒前
Xiongtao发布了新的文献求助10
4秒前
恣意完成签到 ,获得积分10
4秒前
苏莉婷发布了新的文献求助10
5秒前
科研通AI6应助zxl采纳,获得10
5秒前
聆听完成签到,获得积分10
5秒前
英姑应助张立敏采纳,获得10
5秒前
可爱的函函应助syx采纳,获得10
5秒前
干净的醉波完成签到,获得积分10
5秒前
弯弯发布了新的文献求助10
6秒前
瘦瘦绿旋完成签到 ,获得积分10
6秒前
hrq发布了新的文献求助10
7秒前
共享精神应助青桔采纳,获得10
7秒前
研友_VZG7GZ应助磊磊猪采纳,获得10
7秒前
8秒前
8秒前
9秒前
hey应助Stella采纳,获得50
9秒前
10秒前
10秒前
11秒前
luster发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
搜集达人应助wlei采纳,获得10
11秒前
CCC发布了新的文献求助10
12秒前
13秒前
14秒前
Jasper应助weihua采纳,获得10
14秒前
子车茗应助冷静灵竹采纳,获得30
14秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341805
求助须知:如何正确求助?哪些是违规求助? 4477914
关于积分的说明 13937122
捐赠科研通 4374126
什么是DOI,文献DOI怎么找? 2403300
邀请新用户注册赠送积分活动 1396120
关于科研通互助平台的介绍 1368147