CT-based fully automated artificial intelligence model to predict extrapancreatic perineural invasion in pancreatic ductal adenocarcinoma

医学 胰腺导管腺癌 比例危险模型 旁侵犯 接收机工作特性 危险分层 内科学 肿瘤科 对数秩检验 腺癌 放射科 人工智能 胰腺癌 癌症 计算机科学
作者
Jieyu Yu,Chengwei Chen,Mingzhi Lu,Xu Fang,Jing Li,Mengmeng Zhu,Na Li,Xiaohan Yuan,Yaxing Han,Li Wang,Jianping Lu,Chengwei Shao,Yun Bian
出处
期刊:International Journal of Surgery [Wolters Kluwer]
卷期号:110 (12): 7656-7670 被引量:3
标识
DOI:10.1097/js9.0000000000001604
摘要

Background: Extrapancreatic perineural invasion (EPNI) increases the risk of postoperative recurrence in pancreatic ductal adenocarcinoma (PDAC). This study aimed to develop and validate a computed tomography (CT)-based, fully automated preoperative artificial intelligence (AI) model to predict EPNI in patients with PDAC. Methods: The authors retrospectively enrolled 1065 patients from two Shanghai hospitals between June 2014 and April 2023. Patients were split into training ( n =497), internal validation ( n =212), internal test ( n =180), and external test ( n =176) sets. The AI model used perivascular space and tumor contact for EPNI detection. The authors evaluated the AI model’s performance based on its discrimination. Kaplan–Meier curves, log-rank tests, and Cox regression were used for survival analysis. Results: The AI model demonstrated superior diagnostic performance for EPNI with 1-pixel expansion. The area under the curve in the training, validation, internal test, and external test sets were 0.87, 0.88, 0.82, and 0.83, respectively. The log-rank test revealed a significantly longer survival in the AI-predicted EPNI-negative group than the AI-predicted EPNI-positive group in the training, validation, and internal test sets ( P <0.05). Moreover, the AI model exhibited exceptional prognostic stratification in early PDAC and improved assessment of neoadjuvant therapy’s effectiveness. Conclusion: The AI model presents a robust modality for EPNI diagnosis, risk stratification, and neoadjuvant treatment guidance in PDAC, and can be applied to guide personalized precision therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时尚俊驰发布了新的文献求助10
刚刚
无花果应助Cindy采纳,获得10
刚刚
仁爱的雁芙完成签到,获得积分10
刚刚
0905发布了新的文献求助10
2秒前
bobecust发布了新的文献求助10
2秒前
2秒前
2秒前
juan发布了新的文献求助30
3秒前
失主修塔发布了新的文献求助10
4秒前
小小铱发布了新的文献求助10
4秒前
桐桐应助Feng采纳,获得30
4秒前
5秒前
5秒前
爆米花应助李李采纳,获得10
6秒前
6秒前
jy发布了新的文献求助10
7秒前
7秒前
maofeng完成签到,获得积分10
7秒前
林湘完成签到,获得积分10
7秒前
悄悄发布了新的文献求助10
8秒前
小蘑菇应助时尚俊驰采纳,获得10
8秒前
品品完成签到,获得积分10
9秒前
住在魔仙堡的鱼完成签到 ,获得积分10
9秒前
纯真大门发布了新的文献求助10
9秒前
啊福完成签到,获得积分10
9秒前
mcl关闭了mcl文献求助
10秒前
HZQ应助宋宇采纳,获得50
11秒前
风华完成签到,获得积分10
12秒前
甜甜如之发布了新的文献求助20
12秒前
12秒前
yyy完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
遥遥完成签到 ,获得积分10
13秒前
SciGPT应助JYZ采纳,获得10
14秒前
Owen应助纯真大门采纳,获得10
14秒前
田様应助CT采纳,获得10
17秒前
17秒前
17秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
Nanosuspensions 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4194617
求助须知:如何正确求助?哪些是违规求助? 3730307
关于积分的说明 11749255
捐赠科研通 3405398
什么是DOI,文献DOI怎么找? 1868386
邀请新用户注册赠送积分活动 924582
科研通“疑难数据库(出版商)”最低求助积分说明 835466