清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Artificial intelligence in fusion protein three‐dimensional structure prediction: Review and perspective

计算机科学 融合 人工智能 蛋白质结构预测 计算生物学 深度学习 机器学习 融合蛋白 蛋白质结构 管道(软件) 生物 基因 遗传学 哲学 生物化学 语言学 重组DNA 程序设计语言
作者
Himansu Kumar,Pora Kim
出处
期刊:Clinical and translational medicine [Springer Science+Business Media]
卷期号:14 (8) 被引量:7
标识
DOI:10.1002/ctm2.1789
摘要

Abstract Recent advancements in artificial intelligence (AI) have accelerated the prediction of unknown protein structures. However, accurately predicting the three‐dimensional (3D) structures of fusion proteins remains a difficult task because the current AI‐based protein structure predictions are focused on the WT proteins rather than on the newly fused proteins in nature. Following the central dogma of biology, fusion proteins are translated from fusion transcripts, which are made by transcribing the fusion genes between two different loci through the chromosomal rearrangements in cancer. Accurately predicting the 3D structures of fusion proteins is important for understanding the functional roles and mechanisms of action of new chimeric proteins. However, predicting their 3D structure using a template‐based model is challenging because known template structures are often unavailable in databases. Deep learning (DL) models that utilize multi‐level protein information have revolutionized the prediction of protein 3D structures. In this review paper, we highlighted the latest advancements and ongoing challenges in predicting the 3D structure of fusion proteins using DL models. We aim to explore both the advantages and challenges of employing AlphaFold2, RoseTTAFold, tr‐Rosetta and D‐I‐TASSER for modelling the 3D structures. Highlights This review provides the overall pipeline and landscape of the prediction of the 3D structure of fusion protein. This review provides the factors that should be considered in predicting the 3D structures of fusion proteins using AI approaches in each step. This review highlights the latest advancements and ongoing challenges in predicting the 3D structure of fusion proteins using deep learning models. This review explores the advantages and challenges of employing AlphaFold2, RoseTTAFold, tr-Rosetta, and D-I-TASSER to model 3D structures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
10秒前
20秒前
yuyuyu发布了新的文献求助10
26秒前
27秒前
29秒前
33秒前
tutu发布了新的文献求助10
34秒前
35秒前
MMMMM应助科研通管家采纳,获得30
41秒前
英喆完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
1分钟前
wyy发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
自信松思完成签到 ,获得积分10
2分钟前
痴情的翠桃完成签到 ,获得积分10
2分钟前
xz完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Chouvikin完成签到,获得积分10
3分钟前
4分钟前
zpc猪猪完成签到,获得积分10
4分钟前
4分钟前
李健的粉丝团团长应助if采纳,获得10
4分钟前
MMMMM应助科研通管家采纳,获得30
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
mm完成签到 ,获得积分10
4分钟前
if发布了新的文献求助10
4分钟前
可爱的函函应助if采纳,获得10
5分钟前
5分钟前
无辜之卉发布了新的文献求助10
5分钟前
5分钟前
无辜之卉完成签到,获得积分20
5分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1800
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 880
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4204665
求助须知:如何正确求助?哪些是违规求助? 3739145
关于积分的说明 11770914
捐赠科研通 3410454
什么是DOI,文献DOI怎么找? 1871283
邀请新用户注册赠送积分活动 926554
科研通“疑难数据库(出版商)”最低求助积分说明 836665