清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning Modified Reinforcement Learning with Virtual Machine Consolidation for Energy-Efficient Resource Allocation in Cloud Computing

计算机科学 强化学习 云计算 虚拟机 分布式计算 合并(业务) 人工智能 资源配置 操作系统 计算机网络 会计 业务
作者
Chiranjit Dutta,Rama Rani,Amar Jain,I Poonguzhali,Dipmala Salunke,Ruchi Patel
出处
期刊:International Journal of Cooperative Information Systems [World Scientific]
被引量:1
标识
DOI:10.1142/s0218843024500059
摘要

Cloud computing has attracted significant attention because of the growing service demands of businesses that outsource computationally intensive tasks to the data center. Meanwhile, the infrastructure of a data center is comprised of hardware resources that consume a great deal of energy and release harmful levels of carbon dioxide. Cloud data centers demand massive amounts of electrical power as modern applications and organizations grow. To prevent resource waste and promote energy efficiency, virtual machines (VMs) must be dispersed over numerous physical machines (PMs) in a data center in the cloud. The actual allocation of VMs to PMs can involve more complex decision-making processes, such as considering the resource utilization, load balancing, performance requirements, and constraints of the system. Advanced techniques, like intelligent placement algorithms or dynamic resource allocation, may be employed to optimize resource utilization and achieve efficient VM distribution across multiple PMs. Cloud service suppliers aim to lower operational expenses by reducing energy consumption while offering clients competitive services. Minimizing large-scale data center power usage while maintaining the quality of service (QoS), especially for social media-based cloud computing systems, is crucial. Consolidating VMs has been highlighted as a promising method for improving resource efficiency and saving energy in data centers. This research provides deep learning augmented reinforcement learning (RL)-based energy efficient and QoS-aware virtual machine consolidation (VMC) approach to meet the difficulties. The proposed deep learning modified reinforcement learning-virtual machine consolidation (DLMRL-VMC) model can motivate both cloud providers and customers to distribute cloud infrastructure resources to achieve high CPU utilization and good energy efficiency as measured by power usage effectiveness (PUE) and data center infrastructure efficiency (DCiE). The suggested model, DLMRL-VMC, offers a VM placement approach based on resource usage and dynamic energy consumption to determine the best-matched host and VM selection strategy, Average Utilization Migration Time (AUMT). Based on AUMT, deep learning modified reinforcement learning (DLMRL) will choose a VM with a low average CPU utilization and a short migration time. The DLMRL-VMC Energy-efficient, Resource Allocation strategy is evaluated on the trace of the CloudSim VM to attain good PUE and CPU utilization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yindi1991完成签到 ,获得积分10
1秒前
qqaeao完成签到,获得积分10
4秒前
5秒前
liuqi完成签到 ,获得积分10
9秒前
橘子海完成签到 ,获得积分10
13秒前
Waymaker完成签到 ,获得积分10
17秒前
月亮与六便士完成签到 ,获得积分10
19秒前
传奇3应助djbj2022采纳,获得10
26秒前
骨科小白完成签到 ,获得积分10
29秒前
35秒前
Fx完成签到 ,获得积分10
38秒前
vitamin完成签到 ,获得积分10
38秒前
djbj2022发布了新的文献求助10
39秒前
爱啃大虾完成签到,获得积分10
48秒前
NexusExplorer应助雷寒云采纳,获得30
58秒前
qq完成签到 ,获得积分10
1分钟前
丝丢皮得完成签到 ,获得积分10
1分钟前
蔡勇强完成签到 ,获得积分10
1分钟前
wangye完成签到 ,获得积分10
1分钟前
李剑鸿发布了新的文献求助300
1分钟前
天青色等烟雨完成签到 ,获得积分10
1分钟前
光亮的自行车完成签到,获得积分10
1分钟前
科研通AI5应助雷寒云采纳,获得30
1分钟前
lani完成签到 ,获得积分10
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
注水萝卜完成签到 ,获得积分10
1分钟前
4652376完成签到 ,获得积分10
2分钟前
JF123_完成签到 ,获得积分10
2分钟前
2分钟前
leo完成签到 ,获得积分10
2分钟前
wangqinlei完成签到 ,获得积分10
2分钟前
l老王完成签到 ,获得积分10
2分钟前
白日焰火完成签到 ,获得积分10
2分钟前
Jasper应助Frank采纳,获得10
2分钟前
小瓶盖完成签到 ,获得积分10
3分钟前
精明玲完成签到 ,获得积分10
3分钟前
阜睿完成签到 ,获得积分10
3分钟前
无辜的行云完成签到 ,获得积分0
3分钟前
yzhilson完成签到 ,获得积分10
3分钟前
Cold-Drink-Shop完成签到,获得积分10
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788347
求助须知:如何正确求助?哪些是违规求助? 3333722
关于积分的说明 10263216
捐赠科研通 3049616
什么是DOI,文献DOI怎么找? 1673639
邀请新用户注册赠送积分活动 802120
科研通“疑难数据库(出版商)”最低求助积分说明 760511