已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Symptom networks in older adults with cancer: A network analysis

医学 中心性 癌症 心理干预 抑郁症状 精神科 焦虑 内科学 统计 数学
作者
Yi Kuang,Feng Jing,Yanling Sun,Zheng Zhu,Weijie Xing
出处
期刊:Journal of Geriatric Oncology [Elsevier]
卷期号:15 (3): 101718-101718 被引量:16
标识
DOI:10.1016/j.jgo.2024.101718
摘要

Abstract

Introduction

Due to aging, older adults with cancer (OAC) may be confronted with a complex interplay of multiple age-related issues; coupled with receiving cancer treatment, OAC may experience multiple concurrent symptoms that require the identification of the core symptom for effective management. Constructing symptom networks will help in the identification of core symptoms and help achieve personalized and precise interventions. Currently, few studies have used symptom networks to identify core symptoms in OAC. Our objectives were to construct symptom networks of OAC, explore the core symptoms, and compare the differences in symptom networks among various subgroups.

Materials and Methods

Secondary analysis was performed using data from 485 OAC collected in 2021 from a cross-sectional survey named the Shanghai CANcer Survivor (SCANS) Report. The MD Anderson Symptom Inventory (MDASI) was used to assess the incidence and severity of cancer-related symptoms. We used the R package to construct symptom networks and identify the centrality indices. The network comparison test was used to compare network differences among the subgroups.

Results

The most common and severe symptoms reported were fatigue, disturbed sleep, and difficulty remembering. The network density was 0.718. Vomiting (rs = 1.81, rb = 2.13), fatigue (rs = 1.54, rb = 1.93), and sadness (rs = 0.81, rb = 0.69) showed the highest strength values, which suggested that these symptoms were more likely to co-occur with other symptoms. The network comparison tests showed significant differences in symptom network density between the subgroups categorized as survival "< 5 years" and survival "≥ 5 years" (p = 0.002), as well as between the those with comorbidities and those without comorbidities (p = 0.037).

Discussion

Our study identified symptom networks in 485 OAC. Vomiting, fatigue, and sadness were important symptoms in the symptom networks of OAC. The symptom networks differed among populations with different survival durations and comorbidities. Our network analysis provides a reference for future targeted symptom management and interventions in OAC. In the future, conducting dynamic research on symptom networks will be crucial to explore interaction mechanisms and change trends between symptoms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
研友_n0kjPL完成签到,获得积分0
1秒前
漂亮听双完成签到,获得积分10
1秒前
meiqi完成签到 ,获得积分10
2秒前
牛牛完成签到 ,获得积分10
3秒前
念与惜发布了新的文献求助10
4秒前
淡淡元蝶完成签到 ,获得积分10
4秒前
自然的亦巧完成签到,获得积分10
5秒前
ANK完成签到,获得积分10
5秒前
Zz完成签到 ,获得积分10
6秒前
丁浩添完成签到,获得积分20
6秒前
7秒前
大发明家完成签到,获得积分0
8秒前
gmchen完成签到,获得积分10
8秒前
YZChen完成签到,获得积分10
9秒前
香菜头完成签到 ,获得积分10
10秒前
10秒前
Stroeve完成签到,获得积分10
10秒前
板凳完成签到 ,获得积分10
11秒前
淮安石河子完成签到 ,获得积分10
12秒前
顾矜应助逍遥子0211采纳,获得10
12秒前
genius完成签到 ,获得积分10
12秒前
KK发布了新的文献求助10
12秒前
白紫寒完成签到,获得积分10
13秒前
优美的南烟完成签到,获得积分10
14秒前
紫枫完成签到,获得积分10
14秒前
dabai完成签到 ,获得积分10
15秒前
L_MD完成签到,获得积分10
17秒前
momo完成签到,获得积分10
17秒前
木子完成签到 ,获得积分10
17秒前
17秒前
春山完成签到 ,获得积分10
18秒前
芋泥小天才完成签到 ,获得积分10
18秒前
我爱学习完成签到 ,获得积分10
18秒前
fhw完成签到 ,获得积分10
18秒前
氟锑酸完成签到 ,获得积分10
19秒前
二三完成签到 ,获得积分10
20秒前
lllable完成签到,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763321
求助须知:如何正确求助?哪些是违规求助? 5540592
关于积分的说明 15404702
捐赠科研通 4899136
什么是DOI,文献DOI怎么找? 2635354
邀请新用户注册赠送积分活动 1583459
关于科研通互助平台的介绍 1538528