材料科学
抛光
选择性激光熔化
表面粗糙度
激光器
电化学
冶金
微观结构
表面光洁度
激光功率缩放
腐蚀
复合材料
激光扫描
电极
光学
物理
化学
物理化学
作者
Jun Liu,Chunbo Li,Huan Yang,Jiani Liu,Jiayan Wang,Leimin Deng,Licun Fang,Can Yang
出处
期刊:Micromachines
[MDPI AG]
日期:2024-03-11
卷期号:15 (3): 374-374
被引量:9
摘要
The process of forming metal components through selective laser melting (SLM) results in inherent spherical effects, powder adhesion, and step effects, which collectively lead to surface roughness in stainless steel, limiting its potential for high-end applications. This study utilizes a laser-electrochemical hybrid process to polish SLM-formed 316L stainless steel (SS) and examines the influence of process parameters such as laser power and scanning speed on surface roughness and micro-morphology. A comparative analysis of the surface roughness, microstructure, and wear resistance of SLM-formed 316L SS polished using laser, electrochemical, and laser-electrochemical hybrid processes is presented. The findings demonstrate that, compared to laser and electrochemical polishing alone, the laser-electrochemical hybrid polishing exhibits the most significant improvement in surface roughness and the highest material wear resistance. Additionally, the hybrid process results in a surface free of cracks and only a small number of tiny corrosion holes, making it more suitable for polishing the surface of 316L SS parts manufactured via SLM.
科研通智能强力驱动
Strongly Powered by AbleSci AI