Geography-aware Heterogeneous Graph Contrastive Learning for Travel Recommendation

计算机科学 推荐系统 旅游 模式(遗传算法) 特征学习 图形 情报检索 匹配(统计) 产品(数学) 万维网 数据科学 人工智能 理论计算机科学 地理 统计 几何学 数学 考古
作者
Lei Chen,Jie Cao,Weichao Liang,Qiaolin Ye
出处
期刊:ACM Transactions on Spatial Algorithms and Systems 被引量:1
标识
DOI:10.1145/3641277
摘要

Recommendation system concentrates on quickly matching products to consumer’s needs which plays a major role in improving user experiences and increase conversion rate. Travel recommendation has become a hot topic in both industry and academia with the development of the tourism industry. Nevertheless, the selection of travel products entails careful consideration of various geographical factors, such as departure and destination. Meanwhile, due to the limitation of finance and time, users browse and purchase travel products less frequently than they do for traditional products, which leads to data sparsity problem in representation learning. To solve these challenges, a novel model named GHGCL (short for G eography-aware H eterogeneous G raph C ontrastive L earning) is proposed for recommending travel products. Concretely, we model the travel recommender system as an heterogeneous information network with geographical information, and capture diverse user preferences from local and high-order structures. Especially, we design two kinds of contrastive learning tasks for better user and travel product representation learning. The multi-view contrastive learning aims to bridge the gap between network schema and meta-path view representations. The meta-path contrastive learning focuses on modeling the coarse-grained commonality between different meta-paths from the perspective of different geographical factors, i.e., departure and destination. We assess the performance of GHGCL by performing a series of experiments on a real-world dataset and the results clearly verify its superiority as compared to the baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蜀山刀客完成签到,获得积分10
2秒前
魔幻千秋完成签到,获得积分0
3秒前
jiangqin123完成签到 ,获得积分10
3秒前
jixuchance完成签到,获得积分10
4秒前
付艳完成签到,获得积分10
4秒前
aaaaaa完成签到,获得积分10
8秒前
风不尽,树不静完成签到 ,获得积分0
8秒前
现代风格完成签到,获得积分10
11秒前
磊2024完成签到,获得积分10
11秒前
研友_Z1eDgZ完成签到,获得积分10
11秒前
flytime1115完成签到,获得积分10
11秒前
peipei完成签到,获得积分10
12秒前
111完成签到,获得积分10
13秒前
斯奈克完成签到,获得积分10
15秒前
carly完成签到 ,获得积分10
15秒前
默默孱完成签到 ,获得积分10
15秒前
AURORA丶完成签到 ,获得积分10
16秒前
Running完成签到 ,获得积分10
17秒前
54zxy完成签到,获得积分10
18秒前
Ice_zhao完成签到 ,获得积分10
19秒前
阡陌完成签到,获得积分10
20秒前
savesunshine1022完成签到,获得积分10
21秒前
聪明小丸子完成签到,获得积分10
21秒前
24秒前
爱蕊咖完成签到 ,获得积分10
25秒前
zokor完成签到 ,获得积分10
25秒前
熙梓日记完成签到,获得积分10
25秒前
遇见完成签到 ,获得积分10
28秒前
背后访风完成签到 ,获得积分10
29秒前
姚琛完成签到 ,获得积分10
30秒前
坚定背包完成签到,获得积分10
30秒前
杨一完成签到 ,获得积分10
31秒前
标致雁发布了新的文献求助10
31秒前
zj完成签到,获得积分10
31秒前
大气的尔蓝完成签到,获得积分10
35秒前
仿生人完成签到,获得积分10
36秒前
FCL完成签到,获得积分10
37秒前
teadan完成签到 ,获得积分10
39秒前
标致雁完成签到,获得积分20
40秒前
蛋花肉圆汤完成签到,获得积分10
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946218
求助须知:如何正确求助?哪些是违规求助? 3491137
关于积分的说明 11059098
捐赠科研通 3222085
什么是DOI,文献DOI怎么找? 1780839
邀请新用户注册赠送积分活动 865866
科研通“疑难数据库(出版商)”最低求助积分说明 800083