Analysis of microscopic deformation mechanism of SiCp/Al composites induced by ultrasonic vibration nanoindentation

材料科学 复合材料 缩进 超声波传感器 纳米压痕 振动 滑脱 变形机理 位错 微观结构 声学 物理
作者
Zhaojie Yuan,Daohui Xiang,Peicheng Peng,Yanqin Li,Zhiqiang Zhang,Binghao Li,Bo Su,Guofu Gao,Bo Zhao
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:434: 140073-140073 被引量:1
标识
DOI:10.1016/j.jclepro.2023.140073
摘要

Ultrasonic vibration machining technology affords environmentally friendly dry cutting without employing a cutting fluid and has been applied to the macro-scale dry cutting precision machining of SiCp/Al composites. However, the high-frequency vibration on the atomic-scale deformation mechanism of such materials remains unclear. Hence, this paper combines the molecular dynamics simulations (MD) with ultrasonic vibration indentation tests to investigate the effect of ultrasonic vibration on the multiscale deformation of SiCp/Al composites. The results demonstrate that the vibration amplitude exceeding the lattice constant (4.05 Å) of Al induces the plastic flow of Al atoms after breaking through the interatomic force. On the one hand, the ultrasonic high-frequency vibration energy accelerates the interfacial failure and the SiC particle fragmentation and promotes the dislocation movement to form the dislocation loop. On the other hand, compared with conventional indentation, ultrasonic vibration energy reduces the FCC phase transition rate by up to 40.8% and improves the toughness of the composites. Meanwhile, the high-frequency impact energy promotes the material to produce lattice distortion and subgranular grains, where grain slippage and lamination faults occur at the grain boundaries. Besides, the maximum depth of the material impact layer is about 1.45 times that of a conventional indentation, which contributes to the material being removed efficiently. The results of this research provide potential insights into ultrasonic vibration-assisted micro and nano removal processing of SiCp/Al composites, which could help to expand the efficient and precise clean processing of this type of material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1699Z关注了科研通微信公众号
1秒前
hnxxangel发布了新的文献求助10
2秒前
基莲发布了新的文献求助10
6秒前
6秒前
完美世界应助gkhsdvkb采纳,获得10
6秒前
荒野女巫发布了新的文献求助10
6秒前
小二郎应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
makabaka完成签到,获得积分10
7秒前
852应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得20
7秒前
pluto应助科研通管家采纳,获得10
7秒前
风之谷发布了新的文献求助30
11秒前
14秒前
15秒前
16秒前
荒野女巫完成签到,获得积分10
18秒前
19秒前
桐桐应助唠叨的谷兰采纳,获得10
21秒前
hnxxangel发布了新的文献求助10
22秒前
奎玊发布了新的文献求助10
23秒前
CC发布了新的文献求助10
23秒前
hatt完成签到 ,获得积分10
26秒前
科研路上互帮互助,共同进步完成签到 ,获得积分10
26秒前
30秒前
唠叨的谷兰完成签到,获得积分10
31秒前
积极夜雪完成签到,获得积分10
32秒前
32秒前
34秒前
烟花应助ZJin采纳,获得10
34秒前
37秒前
37秒前
bliyaa完成签到,获得积分10
37秒前
hnxxangel发布了新的文献求助10
39秒前
40秒前
42秒前
bliyaa发布了新的文献求助10
43秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2476530
求助须知:如何正确求助?哪些是违规求助? 2140627
关于积分的说明 5455756
捐赠科研通 1864035
什么是DOI,文献DOI怎么找? 926626
版权声明 562846
科研通“疑难数据库(出版商)”最低求助积分说明 495768