质子化
光化学
空位缺陷
氧气
金属
化学
氧化物
电子顺磁共振
氧化铌
X射线光电子能谱
无机化学
材料科学
结晶学
有机化学
化学工程
核磁共振
工程类
离子
物理
作者
Jiacong Wu,Juncheng Zhu,W. C. Fan,Dongpo He,Qinyuan Hu,Shan Zhu,Wensheng Yan,Jun Hu,Junfa Zhu,Qingxia Chen,Xingchen Jiao,Yi Xie
出处
期刊:Nano Letters
[American Chemical Society]
日期:2024-01-04
卷期号:24 (2): 696-702
被引量:32
标识
DOI:10.1021/acs.nanolett.3c04012
摘要
Selectively achieving the photoreduction of carbon dioxide (CO2) to methane (CH4) remains a significant challenge, which primarily arises from the complexity of the protonation process. In this work, we designed metal-vacancy pair sites in defective metal oxide semiconductors, which anchor the reactive intermediates with a bridged linkage for the selective protonation to produce CH4. As an example, oxygen-deficient Nb2O5 nanosheets are synthesized, in which the niobium–oxygen vacancy pair sites are demonstrated by X-ray photoelectron spectroscopy and electron paramagnetic resonance spectra. In situ Fourier transform infrared spectroscopy monitors the *CH3O intermediate, a key intermediate for CH4 production, during the CO2 photoreduction in oxygen-deficient Nb2O5 nanosheets. Importantly, the built metal-vacancy pair sites regulate the *CH3O formation step as a spontaneous process, making the reduction of CO2 to CH4 the preferred method. Therefore, the oxygen-deficient Nb2O5 nanosheets exhibit a CH4 formation rate of 19.14 μmol g–1 h–1, with an electron selectivity of ∼94.1%.
科研通智能强力驱动
Strongly Powered by AbleSci AI