A deep learning knowledge distillation framework using knee MRI and arthroscopy data for meniscus tear detection

接收机工作特性 人工智能 关节镜检查 深度学习 蒸馏 计算机科学 机器学习 生物医学工程 化学 外科 医学 色谱法
作者
Mengjie Ying,Yufan Wang,Kai Yang,Haoyuan Wang,Xudong Liu
出处
期刊:Frontiers in Bioengineering and Biotechnology [Frontiers Media]
卷期号:11 被引量:2
标识
DOI:10.3389/fbioe.2023.1326706
摘要

Purpose: To construct a deep learning knowledge distillation framework exploring the utilization of MRI alone or combing with distilled Arthroscopy information for meniscus tear detection. Methods: A database of 199 paired knee Arthroscopy-MRI exams was used to develop a multimodal teacher network and an MRI-based student network, which used residual neural networks architectures. A knowledge distillation framework comprising the multimodal teacher network T and the monomodal student network S was proposed. We optimized the loss functions of mean squared error (MSE) and cross-entropy (CE) to enable the student network S to learn arthroscopic information from the teacher network T through our deep learning knowledge distillation framework, ultimately resulting in a distilled student network S T . A coronal proton density (PD)-weighted fat-suppressed MRI sequence was used in this study. Fivefold cross-validation was employed, and the accuracy, sensitivity, specificity, F1-score, receiver operating characteristic (ROC) curves and area under the receiver operating characteristic curve (AUC) were used to evaluate the medial and lateral meniscal tears detection performance of the models, including the undistilled student model S , the distilled student model S T and the teacher model T . Results: The AUCs of the undistilled student model S , the distilled student model S T , the teacher model T for medial meniscus (MM) tear detection and lateral meniscus (LM) tear detection are 0.773/0.672, 0.792/0.751 and 0.834/0.746, respectively. The distilled student model S T had higher AUCs than the undistilled model S . After undergoing knowledge distillation processing, the distilled student model demonstrated promising results, with accuracy (0.764/0.734), sensitivity (0.838/0.661), and F1-score (0.680/0.754) for both medial and lateral tear detection better than the undistilled one with accuracy (0.734/0.648), sensitivity (0.733/0.607), and F1-score (0.620/0.673). Conclusion: Through the knowledge distillation framework, the student model S based on MRI benefited from the multimodal teacher model T and achieved an improved meniscus tear detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
科研通AI5应助shenglll采纳,获得40
5秒前
zho发布了新的文献求助10
5秒前
竹筏过海应助pokexuejiao采纳,获得30
6秒前
丘比特应助乔心采纳,获得10
7秒前
不懂发布了新的文献求助10
7秒前
9秒前
10秒前
鱿鱼完成签到,获得积分10
12秒前
CodeCraft应助盛夏采纳,获得20
12秒前
雪白鸿涛发布了新的文献求助10
13秒前
jyy应助超级诗桃采纳,获得10
13秒前
尼克拉倒完成签到,获得积分10
17秒前
今后应助雪白鸿涛采纳,获得10
18秒前
19秒前
20秒前
21秒前
DJDJ完成签到,获得积分20
21秒前
DJDJ发布了新的文献求助10
24秒前
科研通AI5应助啊锋采纳,获得30
27秒前
百变小数完成签到,获得积分10
30秒前
31秒前
无风完成签到,获得积分10
31秒前
liuda完成签到 ,获得积分10
33秒前
彭于晏应助meat12采纳,获得10
34秒前
huangxuanyu发布了新的文献求助10
36秒前
42秒前
思源应助善良高山采纳,获得10
44秒前
YQQ发布了新的文献求助10
44秒前
45秒前
45秒前
啊锋发布了新的文献求助30
46秒前
雪山飞龙发布了新的文献求助10
46秒前
玺青一生完成签到 ,获得积分10
46秒前
搜集达人应助shine采纳,获得10
46秒前
超级无敌暴龙战士完成签到,获得积分10
48秒前
FashionBoy应助沐沐采纳,获得10
48秒前
49秒前
51秒前
dll完成签到 ,获得积分10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781475
求助须知:如何正确求助?哪些是违规求助? 3327071
关于积分的说明 10229393
捐赠科研通 3041969
什么是DOI,文献DOI怎么找? 1669742
邀请新用户注册赠送积分活动 799258
科研通“疑难数据库(出版商)”最低求助积分说明 758757