Engineering Platelet Membrane‐Coated Bimetallic MOFs as Biodegradable Nanozymes for Efficient Antibacterial Therapy

双金属片 纳米材料基催化剂 催化作用 材料科学 纳米技术 生物降解 化学 活性氧 表面改性 纳米颗粒 有机化学 生物化学 物理化学
作者
Qingying Shi,Yupei Zhao,Meihan Liu,Feiyu Shi,Liuxing Chen,Xinru Xu,Gao J,Huabing Zhao,Fuping Lu,Yongji Qin,Zhen Zhang,Meiling Lian
出处
期刊:Small [Wiley]
被引量:1
标识
DOI:10.1002/smll.202309366
摘要

Nanocatalytic-based wound therapeutics present a promising strategy for generating reactive oxygen species (ROS) to antipathogen to promote wound healing. However, the full clinical potential of these nanocatalysts is limited by their low reactivity, limited targeting ability, and poor biodegradability in the wound microenvironment. Herein, a bio-organic nanozyme is developed by encapsulating a FeZn-based bimetallic organic framework (MOF) (MIL-88B-Fe/Zn) in platelet membranes (PM@MIL-88B-Fe/Zn) for antimicrobial activity during wound healing. The introduction of Zn in MIL-88B-Fe/Zn modulates the electronic structure of Fe thus accelerating the catalytic kinetics of its peroxidase-like activity to catalytically generate powerful ROS. The platelet membrane coating of MOF innovatively enhanced the interaction between nanoparticles and the biological environment, further developing bacterial-targeted therapy with excellent antibacterial activity against both gram-positive and gram-negative bacteria. Furthermore, this nanozyme markedly suppressed the levels of inflammatory cytokines and promoted angiogenesis in vivo to effectively treat skin surface wounds and accelerate wound healing. PM@MIL-88B-Fe/Zn exhibited superior biodegradability, favourable metabolism and non-toxic accumulation, eliminating concerns regarding side effects from long-term exposure. The high catalytic reactivity, excellent targeting features, and biodegradability of these nanoenzymes developed in this study provide useful insights into the design and synthesis of nanocatalysts/nanozymes for practical biomedical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
benben应助陪伴采纳,获得10
1秒前
闪闪灵槐完成签到 ,获得积分10
1秒前
王嘻嘻发布了新的文献求助10
1秒前
小眼儿完成签到,获得积分10
3秒前
谨慎的小鸭子完成签到,获得积分10
3秒前
Akim应助巧克力饼干采纳,获得10
4秒前
5秒前
Ava应助有人采纳,获得10
8秒前
热情飞绿完成签到,获得积分10
9秒前
摆烂昊发布了新的文献求助10
9秒前
若水应助星夜疏爱美食采纳,获得10
9秒前
9秒前
ccc完成签到,获得积分10
10秒前
我是老大应助Ll采纳,获得10
11秒前
西江婉儿完成签到 ,获得积分10
12秒前
jasmine完成签到,获得积分10
13秒前
酷波er应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得20
14秒前
Hello应助科研通管家采纳,获得10
14秒前
Ethan应助科研通管家采纳,获得10
14秒前
有人给科研hub通的求助进行了留言
14秒前
Owen应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
可爱迪应助科研通管家采纳,获得20
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
思源应助jasmine采纳,获得10
16秒前
17秒前
18秒前
Dylan完成签到,获得积分10
18秒前
jiangcai发布了新的文献求助10
19秒前
21秒前
tinylau完成签到 ,获得积分10
21秒前
21秒前
22秒前
22秒前
义气冷菱发布了新的文献求助10
22秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2423531
求助须知:如何正确求助?哪些是违规求助? 2112126
关于积分的说明 5348898
捐赠科研通 1839691
什么是DOI,文献DOI怎么找? 915765
版权声明 561275
科研通“疑难数据库(出版商)”最低求助积分说明 489804