Deep learning applications in investment portfolio management: a systematic literature review

计算机科学 人工智能 深度学习 机器学习 元数据 数据科学 文件夹 强化学习 项目组合管理 知识管理 管理科学 项目管理 工程类 管理 业务 经济 财务 操作系统
作者
Volodymyr Novykov,Christopher Bilson,Adrian Gepp,Geoff Harris,Bruce Vanstone
出处
期刊:Journal of Accounting Literature [Elsevier BV]
被引量:2
标识
DOI:10.1108/jal-07-2023-0119
摘要

Purpose Machine learning (ML), and deep learning in particular, is gaining traction across a myriad of real-life applications. Portfolio management is no exception. This paper provides a systematic literature review of deep learning applications for portfolio management. The findings are likely to be valuable for industry practitioners and researchers alike, experimenting with novel portfolio management approaches and furthering investment management practice. Design/methodology/approach This review follows the guidance and methodology of Linnenluecke et al . (2020), Massaro et al. (2016) and Fisch and Block (2018) to first identify relevant literature based on an appropriately developed search phrase, filter the resultant set of publications and present descriptive and analytical findings of the research itself and its metadata. Findings The authors find a strong dominance of reinforcement learning algorithms applied to the field, given their through-time portfolio management capabilities. Other well-known deep learning models, such as convolutional neural network (CNN) and recurrent neural network (RNN) and its derivatives, have shown to be well-suited for time-series forecasting. Most recently, the number of papers published in the field has been increasing, potentially driven by computational advances, hardware accessibility and data availability. The review shows several promising applications and identifies future research opportunities, including better balance on the risk-reward spectrum, novel ways to reduce data dimensionality and pre-process the inputs, stronger focus on direct weights generation, novel deep learning architectures and consistent data choices. Originality/value Several systematic reviews have been conducted with a broader focus of ML applications in finance. However, to the best of the authors’ knowledge, this is the first review to focus on deep learning architectures and their applications in the investment portfolio management problem. The review also presents a novel universal taxonomy of models used.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邱威发布了新的文献求助10
刚刚
zer0完成签到,获得积分10
3秒前
大模型应助柳暗花明采纳,获得10
3秒前
leanne发布了新的文献求助10
7秒前
思源应助111采纳,获得20
9秒前
11秒前
风中盼易完成签到,获得积分10
11秒前
15秒前
风中盼易发布了新的文献求助10
15秒前
16秒前
昨日无风发布了新的文献求助10
20秒前
ShiRz发布了新的文献求助10
20秒前
22秒前
归尘发布了新的文献求助10
22秒前
元气饱满完成签到 ,获得积分10
24秒前
CCC完成签到 ,获得积分10
25秒前
26秒前
啦啦啦完成签到,获得积分10
27秒前
28秒前
yumiao发布了新的文献求助10
28秒前
文静的绯完成签到,获得积分10
29秒前
Polian发布了新的文献求助10
30秒前
30秒前
科研通AI5应助昨日无风采纳,获得10
32秒前
虚心岂愈完成签到 ,获得积分10
32秒前
ding应助zm采纳,获得10
33秒前
失眠晓霜发布了新的文献求助10
33秒前
天天快乐应助ikress采纳,获得10
33秒前
35秒前
自觉泽洋发布了新的文献求助10
35秒前
lalala发布了新的文献求助10
38秒前
小鱼完成签到 ,获得积分10
38秒前
41秒前
昭谏完成签到,获得积分10
41秒前
爆米花应助笨鸟先飞采纳,获得10
41秒前
wanci应助兴奋帆布鞋采纳,获得10
41秒前
42秒前
零下负七完成签到,获得积分10
43秒前
43秒前
lalala完成签到,获得积分10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782317
求助须知:如何正确求助?哪些是违规求助? 3327805
关于积分的说明 10233193
捐赠科研通 3042700
什么是DOI,文献DOI怎么找? 1670153
邀请新用户注册赠送积分活动 799658
科研通“疑难数据库(出版商)”最低求助积分说明 758876