Deep learning applications in investment portfolio management: a systematic literature review

计算机科学 人工智能 深度学习 机器学习 元数据 数据科学 文件夹 强化学习 项目组合管理 知识管理 管理科学 项目管理 工程类 管理 业务 经济 财务 操作系统
作者
Volodymyr Novykov,Christopher Bilson,Adrian Gepp,Geoff Harris,Bruce Vanstone
出处
期刊:Journal of Accounting Literature [Elsevier BV]
被引量:4
标识
DOI:10.1108/jal-07-2023-0119
摘要

Purpose Machine learning (ML), and deep learning in particular, is gaining traction across a myriad of real-life applications. Portfolio management is no exception. This paper provides a systematic literature review of deep learning applications for portfolio management. The findings are likely to be valuable for industry practitioners and researchers alike, experimenting with novel portfolio management approaches and furthering investment management practice. Design/methodology/approach This review follows the guidance and methodology of Linnenluecke et al . (2020), Massaro et al. (2016) and Fisch and Block (2018) to first identify relevant literature based on an appropriately developed search phrase, filter the resultant set of publications and present descriptive and analytical findings of the research itself and its metadata. Findings The authors find a strong dominance of reinforcement learning algorithms applied to the field, given their through-time portfolio management capabilities. Other well-known deep learning models, such as convolutional neural network (CNN) and recurrent neural network (RNN) and its derivatives, have shown to be well-suited for time-series forecasting. Most recently, the number of papers published in the field has been increasing, potentially driven by computational advances, hardware accessibility and data availability. The review shows several promising applications and identifies future research opportunities, including better balance on the risk-reward spectrum, novel ways to reduce data dimensionality and pre-process the inputs, stronger focus on direct weights generation, novel deep learning architectures and consistent data choices. Originality/value Several systematic reviews have been conducted with a broader focus of ML applications in finance. However, to the best of the authors’ knowledge, this is the first review to focus on deep learning architectures and their applications in the investment portfolio management problem. The review also presents a novel universal taxonomy of models used.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxl发布了新的文献求助20
1秒前
Blanca发布了新的文献求助30
2秒前
今后应助宫冷雁采纳,获得10
2秒前
冷静新烟完成签到,获得积分10
3秒前
EuniceMGuo发布了新的文献求助150
3秒前
喵喵完成签到 ,获得积分10
3秒前
3秒前
文艺的语蝶完成签到,获得积分10
3秒前
4秒前
非而者厚应助呆萌的书包采纳,获得10
4秒前
ttang完成签到,获得积分10
5秒前
5秒前
pop完成签到,获得积分10
7秒前
8秒前
8秒前
东郭翰完成签到 ,获得积分10
8秒前
9秒前
阿瓦隆的蓝胖子完成签到,获得积分10
9秒前
10秒前
10秒前
脑洞疼应助呆萌的书包采纳,获得10
10秒前
量子星尘发布了新的文献求助10
12秒前
宫冷雁发布了新的文献求助10
13秒前
13秒前
昌升发布了新的文献求助10
14秒前
爱学习的憨憨鸭完成签到,获得积分10
14秒前
14秒前
15秒前
zozox完成签到 ,获得积分10
15秒前
充电宝应助煤炭不甜采纳,获得10
16秒前
16秒前
全寻桃完成签到 ,获得积分10
16秒前
尹冰之发布了新的文献求助10
16秒前
18秒前
田様应助yang采纳,获得10
18秒前
英姑应助学习使我快乐采纳,获得10
19秒前
20秒前
今后应助马麻薯采纳,获得10
20秒前
昌升完成签到,获得积分20
20秒前
mlg1552003发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
一國兩制與國家安全 : 香港國安法透視 350
Global Immunoassay Market: Trends, Technologies, and Growth Opportunities, 2025 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4273323
求助须知:如何正确求助?哪些是违规求助? 3802893
关于积分的说明 11917259
捐赠科研通 3449649
什么是DOI,文献DOI怎么找? 1891842
邀请新用户注册赠送积分活动 942633
科研通“疑难数据库(出版商)”最低求助积分说明 846399