A Dual Enrichment Synergistic Strategy to Handle Data Heterogeneity for Domain Incremental Cardiac Segmentation

稳健性(进化) 计算机科学 升级 分割 人工智能 领域(数学分析) 一般化 编码(社会科学) 领域知识 适用范围 机器学习 数据挖掘 数学 基因 统计 操作系统 数学分析 生物化学 数量结构-活动关系 化学
作者
Kang Li,Yu Zhu,Lequan Yu,Pheng‐Ann Heng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (6): 2279-2290 被引量:8
标识
DOI:10.1109/tmi.2024.3364240
摘要

Upon remarkable progress in cardiac image segmentation, contemporary studies dedicate to further upgrading model functionality toward perfection, through progressively exploring the sequentially delivered datasets over time by domain incremental learning. Existing works mainly concentrated on addressing the heterogeneous style variations, but overlooked the critical shape variations across domains hidden behind the sub-disease composition discrepancy. In case the updated model catastrophically forgets the sub-diseases that were learned in past domains but are no longer present in the subsequent domains, we proposed a dual enrichment synergistic strategy to incrementally broaden model competence for a growing number of sub-diseases. The data-enriched scheme aims to diversify the shape composition of current training data via displacement-aware shape encoding and decoding, to gradually build up the robustness against cross-domain shape variations. Meanwhile, the model-enriched scheme intends to strengthen model capabilities by progressively appending and consolidating the latest expertise into a dynamically-expanded multi-expert network, to gradually cultivate the generalization ability over style-variated domains. The above two schemes work in synergy to collaboratively upgrade model capabilities in two-pronged manners. We have extensively evaluated our network with the ACDC and M&Ms datasets in single-domain and compound-domain incremental learning settings. Our approach outperformed other competing methods and achieved comparable results to the upper bound.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助Jbdjxnixj采纳,获得10
刚刚
djbj2022发布了新的文献求助20
1秒前
3秒前
3秒前
英姑应助正直沧海采纳,获得10
3秒前
5秒前
Angie发布了新的文献求助50
6秒前
7秒前
7秒前
9秒前
9秒前
坚定芷烟发布了新的文献求助10
9秒前
9秒前
scofield发布了新的文献求助30
9秒前
科研通AI6应助青山采纳,获得10
9秒前
胡萝卜素完成签到,获得积分10
10秒前
汉堡包应助风一起采纳,获得10
10秒前
111111完成签到,获得积分10
10秒前
LBJ完成签到,获得积分10
10秒前
Sir.夏季风完成签到,获得积分10
11秒前
白鸽鸽发布了新的文献求助10
12秒前
acaismoon完成签到,获得积分10
12秒前
12秒前
wczhang1999发布了新的文献求助10
12秒前
梦自然完成签到 ,获得积分10
13秒前
华子发布了新的文献求助10
13秒前
论文降临发布了新的文献求助10
13秒前
14秒前
Sir.夏季风发布了新的文献求助10
14秒前
15秒前
16秒前
量子星尘发布了新的文献求助10
18秒前
zou发布了新的文献求助10
18秒前
善学以致用应助小板栗采纳,获得10
19秒前
赘婿应助ccz采纳,获得10
19秒前
飘逸的麦片完成签到,获得积分10
19秒前
zzf发布了新的文献求助10
20秒前
Dream7完成签到 ,获得积分20
20秒前
21秒前
科研通AI2S应助周防采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533277
求助须知:如何正确求助?哪些是违规求助? 4621611
关于积分的说明 14579423
捐赠科研通 4561659
什么是DOI,文献DOI怎么找? 2499488
邀请新用户注册赠送积分活动 1479305
关于科研通互助平台的介绍 1450504