Plasma proteomic profiles predict individual future health risk

生命银行 医学 疾病 痴呆 弗雷明翰风险评分 内科学 生物信息学 肿瘤科 生物
作者
Jia You,Yu Guo,Yi Zhang,Jujiao Kang,Linbo Wang,Jianfeng Feng,Wei Cheng,Jin‐Tai Yu
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:14 (1) 被引量:52
标识
DOI:10.1038/s41467-023-43575-7
摘要

Developing a single-domain assay to identify individuals at high risk of future events is a priority for multi-disease and mortality prevention. By training a neural network, we developed a disease/mortality-specific proteomic risk score (ProRS) based on 1461 Olink plasma proteins measured in 52,006 UK Biobank participants. This integrative score markedly stratified the risk for 45 common conditions, including infectious, hematological, endocrine, psychiatric, neurological, sensory, circulatory, respiratory, digestive, cutaneous, musculoskeletal, and genitourinary diseases, cancers, and mortality. The discriminations witnessed high accuracies achieved by ProRS for 10 endpoints (e.g., cancer, dementia, and death), with C-indexes exceeding 0.80. Notably, ProRS produced much better or equivalent predictive performance than established clinical indicators for almost all endpoints. Incorporating clinical predictors with ProRS enhanced predictive power for most endpoints, but this combination only exhibited limited improvement when compared to ProRS alone. Some proteins, e.g., GDF15, exhibited important discriminative values for various diseases. We also showed that the good discriminative performance observed could be largely translated into practical clinical utility. Taken together, proteomic profiles may serve as a replacement for complex laboratory tests or clinical measures to refine the comprehensive risk assessments of multiple diseases and mortalities simultaneously. Our models were internally validated in the UK Biobank; thus, further independent external validations are necessary to confirm our findings before application in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助whole采纳,获得10
刚刚
奥里给完成签到 ,获得积分10
1秒前
SYT完成签到,获得积分10
2秒前
2秒前
3秒前
古药发布了新的文献求助10
4秒前
4秒前
jinzhen发布了新的文献求助10
5秒前
尽快毕业完成签到 ,获得积分10
5秒前
pt完成签到 ,获得积分10
5秒前
7秒前
7秒前
zbw发布了新的文献求助10
7秒前
三号技师发布了新的文献求助30
9秒前
9秒前
9秒前
Lorain发布了新的文献求助10
9秒前
丘比特应助迅速的八宝粥采纳,获得10
10秒前
清爽老九应助chess拌麦粒采纳,获得20
10秒前
sunshine完成签到,获得积分10
11秒前
古药完成签到,获得积分10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
12秒前
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
小天发布了新的文献求助30
14秒前
大个应助Lorain采纳,获得10
14秒前
干净山柳发布了新的文献求助10
16秒前
16秒前
酷波er应助zcl采纳,获得10
18秒前
冷烟浮完成签到 ,获得积分10
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780569
求助须知:如何正确求助?哪些是违规求助? 3326080
关于积分的说明 10225440
捐赠科研通 3041148
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799028
科研通“疑难数据库(出版商)”最低求助积分说明 758669