ECG-based data-driven solutions for diagnosis and prognosis of cardiovascular diseases: A systematic review

计算机科学 重症监护医学 心脏病学 医学 数据挖掘 内科学
作者
Pedro A. Moreno-Sánchez,Guadalupe García Isla,Valentina Corino,Antti Vehkaoja,Kirsten Brukamp,Mark van Gils,Luca Mainardi
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:172: 108235-108235 被引量:10
标识
DOI:10.1016/j.compbiomed.2024.108235
摘要

Cardiovascular diseases (CVD) are a leading cause of death globally, and result in significant morbidity and reduced quality of life. The electrocardiogram (ECG) plays a crucial role in CVD diagnosis, prognosis, and prevention; however, different challenges still remain, such as an increasing unmet demand for skilled cardiologists capable of accurately interpreting ECG. This leads to higher workload and potential diagnostic inaccuracies. Data-driven approaches, such as machine learning (ML) and deep learning (DL) have emerged to improve existing computer-assisted solutions and enhance physicians' ECG interpretation of the complex mechanisms underlying CVD. However, many ML and DL models used to detect ECG-based CVD suffer from a lack of explainability, bias, as well as ethical, legal, and societal implications (ELSI). Despite the critical importance of these Trustworthy Artificial Intelligence (AI) aspects, there is a lack of comprehensive literature reviews that examine the current trends in ECG-based solutions for CVD diagnosis or prognosis that use ML and DL models and address the Trustworthy AI requirements. This review aims to bridge this knowledge gap by providing a systematic review to undertake a holistic analysis across multiple dimensions of these data-driven models such as type of CVD addressed, dataset characteristics, data input modalities, ML and DL algorithms (with a focus on DL), and aspects of Trustworthy AI like explainability, bias and ethical considerations. Additionally, within the analyzed dimensions, various challenges are identified. To these, we provide concrete recommendations, equipping other researchers with valuable insights to understand the current state of the field comprehensively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
三国杀启动完成签到,获得积分10
1秒前
LZL完成签到 ,获得积分10
2秒前
吴晨曦发布了新的文献求助10
2秒前
3秒前
复杂的可乐完成签到 ,获得积分10
4秒前
Pool完成签到 ,获得积分10
4秒前
晚星完成签到,获得积分10
4秒前
6秒前
刘七岁完成签到,获得积分10
6秒前
用师兄单身换论文必中完成签到,获得积分10
7秒前
从容谷菱发布了新的文献求助10
8秒前
吴晨曦完成签到,获得积分10
8秒前
飞雪完成签到,获得积分10
8秒前
熊熊发布了新的文献求助10
11秒前
贺贺完成签到,获得积分10
11秒前
Miranda发布了新的文献求助10
12秒前
科研通AI5应助文献狂人采纳,获得10
12秒前
CipherSage应助1111222333采纳,获得10
15秒前
风中书易完成签到,获得积分10
15秒前
15秒前
尖叫尖叫完成签到 ,获得积分10
16秒前
17秒前
17秒前
18秒前
小饭团子发布了新的文献求助20
18秒前
张六六完成签到 ,获得积分10
19秒前
叶痕TNT完成签到 ,获得积分10
19秒前
20秒前
典雅的夜安完成签到,获得积分10
21秒前
华仔应助Gray采纳,获得10
21秒前
22秒前
sybs完成签到,获得积分10
22秒前
黄晃晃完成签到,获得积分20
22秒前
li发布了新的文献求助30
23秒前
ju发布了新的文献求助10
23秒前
Orange应助大方的百川采纳,获得10
24秒前
24秒前
桐桐应助深情的思雁采纳,获得10
24秒前
可口可乐发布了新的文献求助10
24秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801141
求助须知:如何正确求助?哪些是违规求助? 3346809
关于积分的说明 10330527
捐赠科研通 3063158
什么是DOI,文献DOI怎么找? 1681402
邀请新用户注册赠送积分活动 807549
科研通“疑难数据库(出版商)”最低求助积分说明 763728