Surface Reconditioning of Lithium Metal Electrodes by Laser Treatment for the Industrial Production of Enhanced Lithium Metal Batteries

材料科学 锂(药物) 金属锂 金属 电极 激光器 冶金 纳米技术 阳极 光学 医学 化学 物理 物理化学 内分泌学
作者
Johannes Kriegler,Heiko Ballmes,Soraya Dib,Ali Gökhan Demir,Lucas Hille,Yue Liang,Lovis Wach,Steffen Weimann,Josef Keilhofer,Gyeong Man Choi,Jennifer L. M. Rupp,Michael F. Zaeh
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202313766
摘要

Abstract Incorporating lithium metal anodes in next‐generation batteries promises enhanced energy densities. However, lithium's reactivity results in the formation of a native surface film, affecting battery performance. Therefore, precisely controlling the chemical and morphological surface condition of lithium metal anodes is imperative for producing high‐performance lithium metal batteries. This study demonstrates the efficacy of laser treatment for removing superficial contaminants from lithium metal substrates. To this end, picosecond‐pulsed laser radiation is proposed for modifying the surface of lithium metal substrates. Scanning electron microscopy (SEM) revealed that different laser process regimes can be exploited to achieve a wide spectrum of surface morphologies. Energy‐dispersive X‐ray spectroscopy (EDX) confirmed substantial reductions of ≈80% in oxidic and carbonaceous surface species. The contamination layer removal translated into interfacial resistance reductions of 35% and 44% when testing laser‐cleaned lithium metal anodes in symmetric all‐solid‐state batteries (ASSBs) with lithium phosphorus sulfur chloride (LPSCl) and lithium lanthanum zirconium oxide (LLZO) solid electrolytes, respectively. Finally, a framework for integrating laser cleaning into industrial battery production is suggested, evidencing the industrial feasibility of the approach. In summary, this work advances the understanding of lithium metal surface treatments and serves as proof of principle for its industrial applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maox1aoxin应助曾经的曼巴采纳,获得30
1秒前
jaly1111完成签到,获得积分10
3秒前
思源应助v小飞侠101采纳,获得10
5秒前
6秒前
lalala发布了新的文献求助10
6秒前
7秒前
7秒前
dddddd完成签到,获得积分10
7秒前
上官若男应助认真学习采纳,获得10
8秒前
9秒前
充电宝应助jaly1111采纳,获得10
9秒前
紧张的世德完成签到 ,获得积分10
9秒前
熱锌银完成签到,获得积分10
9秒前
12秒前
12秒前
猪头军师发布了新的文献求助10
12秒前
13秒前
Zfy发布了新的文献求助10
13秒前
www发布了新的文献求助10
13秒前
不挑食的Marcophages完成签到,获得积分10
14秒前
LYT发布了新的文献求助10
16秒前
16秒前
popovich发布了新的文献求助10
16秒前
老老实实好好活着完成签到,获得积分10
17秒前
林林林发布了新的文献求助10
17秒前
搜集达人应助风未采纳,获得10
17秒前
热情夜梦完成签到 ,获得积分10
17秒前
根正家的小苗红长歪了完成签到,获得积分10
18秒前
爆米花应助曲听安采纳,获得10
18秒前
20秒前
斯文败类应助猪头军师采纳,获得10
20秒前
热情夜梦关注了科研通微信公众号
21秒前
李洋18完成签到,获得积分10
24秒前
25秒前
25秒前
oops完成签到,获得积分20
26秒前
26秒前
Lion Li发布了新的文献求助10
27秒前
28秒前
28秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2422508
求助须知:如何正确求助?哪些是违规求助? 2111720
关于积分的说明 5346407
捐赠科研通 1839212
什么是DOI,文献DOI怎么找? 915538
版权声明 561205
科研通“疑难数据库(出版商)”最低求助积分说明 489669