体内
癌症研究
黑色素瘤
药代动力学
肿瘤细胞
药品
肝肿瘤
离体
体外
化学
医学
药理学
生物
生物化学
生物技术
肝细胞癌
作者
Samantha Jordan,Sangwoo Ryu,Woodrow Burchett,Carl D. Davis,Rhys D.O. Jones,Sam Zhang,Larisa Zueva,George Chang,Li Di
标识
DOI:10.1016/j.xphs.2023.11.024
摘要
Abstract
Tumor binding is an important parameter to derive unbound tumor concentration to explore pharmacokinetics (PK) and pharmacodynamics (PD) relationships for oncology disease targets. Tumor binding was evaluated using eleven matrices, including various commonly used ex vivo human and mouse xenograft and syngeneic tumors, tumor cell lines and liver as a surrogate tissue. The results showed that tumor binding is highly correlated among the different tumors and tumor cell lines except for the mouse melanoma (B16F10) tumor type. Liver fraction unbound (fu) has a good correlation with B16F10 tumor binding. Liver also demonstrates a two-fold equivalency, on average, with binding of other tumor types when a scaling factor is applied. Predictive models were developed for tumor binding, with correlations established with LogD (acids), predicted muscle fu (neutrals) and measured plasma protein binding (bases) to estimate tumor fu when experimental data are not available. Many approaches can be applied to obtain and estimate tumor binding values. One strategy proposed is to use a surrogate tumor tissue, such as mouse xenograft ovarian cancer (OVCAR3) tumor, as a surrogate for tumor binding (except for B16F10) to provide an early assessment of unbound tumor concentrations for development of PK/PD relationships.
科研通智能强力驱动
Strongly Powered by AbleSci AI