Ai-aided diagnosis of oral X-ray images of periapical films based on deep learning

计算机科学 人工智能 背景(考古学) 特征提取 特征(语言学) 交叉熵 模式识别(心理学) 牙科 医学 古生物学 语言学 哲学 生物
作者
Lifeng Gao,Tongkai Xu,Meiyu Liu,Jialin Jin,Li Peng,Xiaoting Zhao,Jiaqing Li,Mengting Yang,Suying Li,Sheng Liang
出处
期刊:Displays [Elsevier BV]
卷期号:82: 102649-102649 被引量:3
标识
DOI:10.1016/j.displa.2024.102649
摘要

Oral X-ray images provide a useful technical means by which dentists examine teeth for dental problems, but the diagnostic process is defective due to its over-reliance on dentists' subjective judgments, lack of objective criteria, etc. In this context, this study examined the AI-aided diagnosis of periapical films based on deep learning. .Based on YOLOv7-X, a YOLO-DENTAL network architecture was used to detect dental caries, dental defects, periapical lesions, and coronal restorations in periapical films. Firstly, the coordinate attention (CA) mechanism was introduced into the backbone feature extraction network, and a backbone-CA structure was presented to enhance the feature extraction capability of the network. Secondly, a simplified Bi-FPN structure was put forward and applied to the feature fusion part of the network to effectively improve its multi-scale feature fusion effect. Thirdly, the existing anchor-based detection head was replaced by an anchor-free decoupled head to simplify operational parameters while improving the generalized detection capability of the model over lesion regions. In the loss function part, existing CIoU loss was replaced by SIoU loss, a border loss function containing direction information. The focal loss containing a weight factor was introduced in calculating confidence loss as a substitute for the existing binary cross entropy loss function to balance positive and negative samples. Meanwhile, a study of ablation experiment was completed. The results validated the positive gain effect of each optimization strategy on the model. The final YOLO-DENTAL network structure exhibited an mAP value of 86.81%, higher than that of YOLOv7-X (79.95%). The effect of aided diagnosis was well achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ysh完成签到 ,获得积分10
1秒前
高大的冰双完成签到,获得积分10
3秒前
研友_VZG7GZ应助乐正广山采纳,获得10
4秒前
14秒前
bill完成签到,获得积分10
15秒前
15秒前
Sylvia完成签到,获得积分10
16秒前
SSYZ完成签到,获得积分10
17秒前
SSYZ发布了新的文献求助10
20秒前
岁岁完成签到,获得积分10
21秒前
dyfsj发布了新的文献求助10
21秒前
24秒前
dyfsj完成签到,获得积分10
28秒前
miu发布了新的文献求助10
28秒前
43秒前
rong完成签到 ,获得积分10
43秒前
nan完成签到,获得积分10
45秒前
46秒前
专注完成签到,获得积分10
48秒前
49秒前
qiao应助xxx7749采纳,获得10
50秒前
657发布了新的文献求助10
50秒前
机灵的冰夏完成签到,获得积分10
51秒前
young发布了新的文献求助10
51秒前
cjj完成签到,获得积分10
52秒前
Meteor636完成签到 ,获得积分10
52秒前
tong发布了新的文献求助10
56秒前
领导范儿应助young采纳,获得10
58秒前
长情箴完成签到 ,获得积分10
59秒前
乐观的香菱完成签到,获得积分10
1分钟前
1分钟前
hcmsaobang2001完成签到,获得积分10
1分钟前
悦耳的颜完成签到,获得积分10
1分钟前
小白完成签到,获得积分10
1分钟前
赛因斯完成签到,获得积分10
1分钟前
垃圾桶完成签到 ,获得积分10
1分钟前
fanfan完成签到 ,获得积分10
1分钟前
美满的冬卉完成签到 ,获得积分10
1分钟前
雨淋沐风完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781306
求助须知:如何正确求助?哪些是违规求助? 3326832
关于积分的说明 10228424
捐赠科研通 3041839
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751