Steel Surface Defect Detection Method Based on Improved YOLOX

计算机科学 材料科学
作者
Chengfei Li,Ao Xu,Qibo Zhang,Yufei Cai
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 37643-37652 被引量:38
标识
DOI:10.1109/access.2024.3374869
摘要

Steel is a crucial material that is extensively utilized in various aspects of daily life and holds significant importance. However, during its production, there is a possibility of certain defects arising that could have a negative impact on the quality of the steel. Only by accurately detecting the defects on the steel surface can we avoid the harm caused by defects in steel. Because the steel surface defect detection algorithm is prone to misdetection, missed detection, and other problems, a steel surface defect detection algorithm based on improved YOLOX is proposed. First, the CSPCrossLayer module proposed in this paper is used to replace the CSPLayer structure in the backbone network to enrich the gradient information of the network and strengthen the feature extraction capability; Then, the SA (Shuffle Attention) module is added after the output of the backbone network, highlighting the general information to input high-quality features for the feature fusion network; Finally, the PSblock module is proposed to replace the CSPLayer structure in the feature fusion network, which reduces redundant computations to efficiently perform feature fusion on feature layers of different scales and improves the feature fusion capability of the model. The experiments involved testing the algorithm on two datasets: the publicly available NEU-DET dataset and a steel rail dataset collected in this paper. The algorithm can reach 77% mAP on the NEU-DET dataset, while the detection speed is 100 FPS. It reaches 88.8% mAP on the steel rail dataset, and the detection speed is 93FPS. These results demonstrate that the proposed algorithm is capable of swiftly and accurately detecting surface defects in steel materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助ark861023采纳,获得10
1秒前
善学以致用应助丰富如南采纳,获得10
1秒前
淇淇完成签到,获得积分20
1秒前
qingmoheng应助djbj2022采纳,获得10
1秒前
安澜发布了新的文献求助30
1秒前
白一航发布了新的文献求助10
3秒前
4秒前
4秒前
刘1完成签到 ,获得积分10
5秒前
pengpur完成签到,获得积分20
5秒前
wqmdd发布了新的文献求助10
5秒前
养老玩家111完成签到,获得积分20
6秒前
Pluto完成签到,获得积分10
7秒前
Godnian完成签到,获得积分10
7秒前
HHHHH完成签到,获得积分10
7秒前
Zrrr完成签到 ,获得积分10
8秒前
9秒前
10秒前
Godnian发布了新的文献求助10
10秒前
丰富如南完成签到,获得积分10
11秒前
12秒前
李健的小迷弟应助感谢采纳,获得10
15秒前
15秒前
郭立欣完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
Anarkh发布了新的文献求助10
19秒前
19秒前
充电宝应助时衍采纳,获得10
20秒前
淡淡灯泡发布了新的文献求助10
22秒前
wqmdd完成签到,获得积分10
23秒前
23秒前
25秒前
酷波er应助LMH采纳,获得10
26秒前
王云云完成签到,获得积分10
26秒前
28秒前
29秒前
奇异果完成签到,获得积分10
29秒前
29秒前
感谢发布了新的文献求助10
30秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532543
求助须知:如何正确求助?哪些是违规求助? 4621304
关于积分的说明 14577464
捐赠科研通 4561132
什么是DOI,文献DOI怎么找? 2499202
邀请新用户注册赠送积分活动 1479089
关于科研通互助平台的介绍 1450376