亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semantic-Aware Adversarial Training for Reliable Deep Hashing Retrieval

计算机科学 对抗制 深度学习 人工智能 散列函数 判别式 机器学习 稳健性(进化) 理论计算机科学 计算机安全 生物化学 化学 基因
作者
Yuan Xu,Zheng Zhang,Xunguang Wang,Lin Wu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 4681-4694 被引量:11
标识
DOI:10.1109/tifs.2023.3297791
摘要

Deep hashing has been intensively studied and successfully applied in large-scale image retrieval systems due to its efficiency and effectiveness. Recent studies have recognized that the existence of adversarial examples poses a security threat to deep hashing models, that is, adversarial vulnerability. Notably, it is challenging to efficiently distill reliable semantic representatives for deep hashing to guide adversarial learning, and thereby it hinders the enhancement of adversarial robustness of deep hashing-based retrieval models. Moreover, current researches on adversarial training for deep hashing are hard to be formalized into a unified minimax structure. In this paper, we explore Semantic-Aware Adversarial Training (SAAT) for improving the adversarial robustness of deep hashing models. Specifically, we conceive a discriminative mainstay features learning (DMFL) scheme to construct semantic representatives for guiding adversarial learning in deep hashing. Particularly, our DMFL with the strict theoretical guarantee is adaptively optimized in a discriminative learning manner, where both discriminative and semantic properties are jointly considered. Moreover, adversarial examples are fabricated by maximizing the Hamming distance between the hash codes of adversarial samples and mainstay features, the efficacy of which is validated in the adversarial attack trials. Further, we, for the first time , formulate the formalized adversarial training of deep hashing into a unified minimax optimization under the guidance of the generated mainstay codes. Extensive experiments on benchmark datasets show superb attack performance against the state-of-the-art algorithms, meanwhile, the proposed adversarial training can effectively eliminate adversarial perturbations for trustworthy deep hashing-based retrieval.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
HJJHJH发布了新的文献求助10
13秒前
24秒前
宝宝熊的熊宝宝完成签到,获得积分10
26秒前
淡定发布了新的文献求助10
29秒前
Li应助neko采纳,获得10
32秒前
科研通AI5应助爱撒娇的衫采纳,获得10
38秒前
Akim应助科研通管家采纳,获得10
39秒前
JamesPei应助淡定采纳,获得10
47秒前
56秒前
Yon完成签到 ,获得积分10
2分钟前
思源应助淡定的井采纳,获得30
3分钟前
姚老表完成签到,获得积分10
3分钟前
4分钟前
哼哼发布了新的文献求助10
4分钟前
4分钟前
herococa发布了新的文献求助150
5分钟前
5分钟前
5分钟前
herococa发布了新的文献求助10
5分钟前
哭泣的丝完成签到 ,获得积分10
5分钟前
5分钟前
务实的焦完成签到 ,获得积分10
5分钟前
犹豫的夏波完成签到 ,获得积分20
6分钟前
6分钟前
bopbopbaby完成签到 ,获得积分10
6分钟前
思源应助科研通管家采纳,获得10
6分钟前
6分钟前
直率的笑翠完成签到 ,获得积分10
7分钟前
longge233233完成签到,获得积分10
7分钟前
SCI的李完成签到 ,获得积分10
7分钟前
ffff完成签到 ,获得积分10
7分钟前
7分钟前
lalala发布了新的文献求助10
7分钟前
灵巧的语兰完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
ding应助HJJHJH采纳,获得10
8分钟前
科研通AI5应助科研通管家采纳,获得10
8分钟前
herococa完成签到,获得积分10
9分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780810
求助须知:如何正确求助?哪些是违规求助? 3326334
关于积分的说明 10226580
捐赠科研通 3041495
什么是DOI,文献DOI怎么找? 1669449
邀请新用户注册赠送积分活动 799051
科研通“疑难数据库(出版商)”最低求助积分说明 758732