Double-suppressed possibilistic fuzzy Gustafson–Kessel clustering algorithm

聚类分析 数学 人工智能 模糊逻辑 算法 计算机科学 数学优化
作者
Haiyan Yu,Lerong Jiang,Jiulun Fan,Rong Lan
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:276: 110736-110736 被引量:6
标识
DOI:10.1016/j.knosys.2023.110736
摘要

Possibilistic fuzzy c-means clustering (PFCM) is an unsupervised hybrid clustering algorithm, which can partly inherit the stability of fuzzy c-means clustering (FCM) algorithm and the noise robustness of possibilistic c-means clustering (PCM) algorithm. However, there are still several limitations in the PFCM when clustering complex data with multiple characteristics: sensitivity to strong noise, coincident clustering problem in multi-class clustering, and disability to deal with strong correlations of feature components. Therefore, a double-suppressed possibilistic fuzzy Gustafson–Kessel​ clustering algorithm (DS-PFGK) is presented. Firstly, we design a new objective function with a modified Mahalanobis distance and an improved weight parameter setting method based on the stability of fuzzy memberships and the anti-noise ability of possibilistic memberships. Moreover, combined with the absolute attribute of possibilistic memberships and the covariance matrix in the modified Mahalanobis distance, an ellipsoidal cluster core which can depict the distribution of sample data is generated to divide each cluster into different regions for selecting appropriate learning objects and identifying noisy data adaptively. Then, a “double-suppressed competitive learning” strategy is designed for the selected learning objects to solve the coincident clustering problem in multi-class clustering by suppressing the nonwinner possibilistic memberships, and to reduce the iteration number by suppressing nonwinner fuzzy memberships and rewarding winner fuzzy memberships. Finally, a segmentation algorithm on noisy color images based on the DS-PFGK is proposed based on the generated cluster cores. Experiments on synthetic datasets, real datasets, and color images show the good performance of the proposed methods compared with several classical and state-of-the-art clustering algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小完成签到,获得积分10
刚刚
思源应助无尘泪采纳,获得10
刚刚
帕提古丽发布了新的文献求助10
1秒前
666完成签到 ,获得积分10
3秒前
。。。完成签到 ,获得积分10
3秒前
3秒前
1461644768完成签到,获得积分10
4秒前
6秒前
6秒前
天玄完成签到,获得积分10
7秒前
斯文败类应助lalala采纳,获得10
7秒前
开心的幼珊完成签到 ,获得积分10
8秒前
huoguo完成签到,获得积分10
8秒前
Zzzzzzz发布了新的文献求助10
9秒前
lwei完成签到,获得积分20
9秒前
11秒前
tiantian8715完成签到,获得积分10
11秒前
LSR关闭了LSR文献求助
11秒前
11秒前
传奇3应助maopf采纳,获得10
12秒前
研友_8QyXr8发布了新的文献求助10
12秒前
充电宝应助及桉采纳,获得10
13秒前
研究牛牛完成签到 ,获得积分10
14秒前
14秒前
啵啵洋完成签到,获得积分20
14秒前
Moislad发布了新的文献求助20
14秒前
情怀应助顺心凡采纳,获得10
14秒前
科研通AI5应助花开无声采纳,获得10
15秒前
tao完成签到 ,获得积分10
15秒前
沈家宁发布了新的文献求助10
16秒前
zed66完成签到,获得积分10
17秒前
精灵完成签到,获得积分10
17秒前
科研通AI5应助活泼的觅云采纳,获得10
17秒前
obito完成签到,获得积分10
17秒前
宋芝恬完成签到,获得积分10
19秒前
anheshu发布了新的文献求助10
20秒前
21秒前
沈家宁完成签到,获得积分20
24秒前
xx完成签到,获得积分20
25秒前
完美世界应助羊踯躅采纳,获得30
26秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799862
求助须知:如何正确求助?哪些是违规求助? 3345153
关于积分的说明 10323869
捐赠科研通 3061736
什么是DOI,文献DOI怎么找? 1680492
邀请新用户注册赠送积分活动 807113
科研通“疑难数据库(出版商)”最低求助积分说明 763462