Benign and Malignant Breast Tumor Classification in Ultrasound and Mammography Images via Fusion of Deep Learning and Handcraft Features

人工智能 计算机科学 乳腺癌 乳腺摄影术 深度学习 模式识别(心理学) 预处理器 计算机辅助诊断 感知器 机器学习 癌症 人工神经网络 医学 内科学
作者
Clara Cruz-Ramos,Oscar García-Avila,Jose A. Almaraz-Damian,Volodymyr Ponomaryov,Rogelio Reyes-Reyes,Sergiy Sadovnychiy
出处
期刊:Entropy [Multidisciplinary Digital Publishing Institute]
卷期号:25 (7): 991-991 被引量:1
标识
DOI:10.3390/e25070991
摘要

Breast cancer is a disease that affects women in different countries around the world. The real cause of breast cancer is particularly challenging to determine, and early detection of the disease is necessary for reducing the death rate, due to the high risks associated with breast cancer. Treatment in the early period can increase the life expectancy and quality of life for women. CAD (Computer Aided Diagnostic) systems can perform the diagnosis of the benign and malignant lesions of breast cancer using technologies and tools based on image processing, helping specialist doctors to obtain a more precise point of view with fewer processes when making their diagnosis by giving a second opinion. This study presents a novel CAD system for automated breast cancer diagnosis. The proposed method consists of different stages. In the preprocessing stage, an image is segmented, and a mask of a lesion is obtained; during the next stage, the extraction of the deep learning features is performed by a CNN—specifically, DenseNet 201. Additionally, handcrafted features (Histogram of Oriented Gradients (HOG)-based, ULBP-based, perimeter area, area, eccentricity, and circularity) are obtained from an image. The designed hybrid system uses CNN architecture for extracting deep learning features, along with traditional methods which perform several handcraft features, following the medical properties of the disease with the purpose of later fusion via proposed statistical criteria. During the fusion stage, where deep learning and handcrafted features are analyzed, the genetic algorithms as well as mutual information selection algorithm, followed by several classifiers (XGBoost, AdaBoost, Multilayer perceptron (MLP)) based on stochastic measures, are applied to choose the most sensible information group among the features. In the experimental validation of two modalities of the CAD design, which performed two types of medical studies—mammography (MG) and ultrasound (US)—the databases mini-DDSM (Digital Database for Screening Mammography) and BUSI (Breast Ultrasound Images Dataset) were used. Novel CAD systems were evaluated and compared with recent state-of-the-art systems, demonstrating better performance in commonly used criteria, obtaining ACC of 97.6%, PRE of 98%, Recall of 98%, F1-Score of 98%, and IBA of 95% for the abovementioned datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
祝新宇发布了新的文献求助10
1秒前
乐一李完成签到,获得积分10
1秒前
2秒前
飞飞完成签到,获得积分10
2秒前
小南完成签到 ,获得积分10
2秒前
早岁完成签到,获得积分10
3秒前
选民很头疼完成签到,获得积分10
4秒前
几木发布了新的文献求助10
4秒前
5秒前
852应助选民很头疼采纳,获得10
7秒前
无聊的熠彤完成签到,获得积分10
7秒前
八对发布了新的文献求助10
8秒前
论文都见刊应助Stalin采纳,获得10
8秒前
房LY完成签到,获得积分10
8秒前
田俊发布了新的文献求助10
9秒前
10秒前
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得30
14秒前
FashionBoy应助科研通管家采纳,获得30
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
15秒前
ding应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
qiulong发布了新的文献求助10
15秒前
AamirAli完成签到,获得积分10
16秒前
Akim应助田俊采纳,获得10
18秒前
21秒前
22秒前
万能图书馆应助谦让寄容采纳,获得10
23秒前
27秒前
JIANG发布了新的文献求助30
28秒前
飘逸凌柏发布了新的文献求助10
30秒前
nie完成签到,获得积分10
30秒前
30秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799181
求助须知:如何正确求助?哪些是违规求助? 3344881
关于积分的说明 10322160
捐赠科研通 3061343
什么是DOI,文献DOI怎么找? 1680214
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763451