Complementary features-aware attentive multi-adapter network for hyperspectral object tracking

高光谱成像 计算机科学 人工智能 判别式 模式识别(心理学) 最小边界框 降维 BitTorrent跟踪器 计算机视觉 眼动 图像(数学)
作者
Shaoqi Ma,Abdolraheem Khader,Liang Xiao
标识
DOI:10.1117/12.2680541
摘要

Hyperspectral object tracking aims to estimate the bounding box for the given target using hyperspectral data. Different from traditional color videos, hyperspectral videos have more abundant band information for their capacity to capture the reflectance spectrum of the target at a wider range of wavelengths provides important capabilities and opportunities, which provides new capabilities for discriminating targets in complex scenes, but also presents new challenges. The limited dataset and the high dimensionality of hyperspectral data are two new challenges in constructing hyperspectral trackers, resulting in existing hyperspectral tracking methods based mainly on correlation filters. This paper proposes a new Complementary Features-aware Attentive Multi-Adapter Network (CFA-MANet), which can train a neural network well and achieve high performance for Hyperspectral Object tracking just using the limited dataset. Specifically, we add a complementary features-aware module to the multi-adapter network, which employs two different strategies to reduce the dimensionality of hyperspectral data from two complementary perspectives, and the joint implementation of these two strategies results in a reduction in the amount of computed data and parameters of the designed neural network while achieving competitive results. Moreover, spatial and channel attention modules are used to learn a wider range of contexts and improve the representation of different semantic features, respectively. Crossattention is used to learn complementary information and thus generate more discriminative representations. Experimental results on hyperspectral datasets show that our method achieves the best results compared to several recent hyperspectral tracking methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gugugaga完成签到,获得积分10
刚刚
CTCG完成签到 ,获得积分10
1秒前
eco完成签到,获得积分10
1秒前
jun完成签到,获得积分10
1秒前
FashionBoy应助sll采纳,获得10
1秒前
舒服的月饼完成签到 ,获得积分10
2秒前
兔子完成签到 ,获得积分10
2秒前
思绪摸摸头完成签到 ,获得积分10
3秒前
殷启维完成签到,获得积分10
4秒前
灵活的胖子wxp完成签到,获得积分10
4秒前
土壤情缘完成签到,获得积分10
5秒前
阔达以山完成签到,获得积分10
5秒前
lyl完成签到,获得积分10
5秒前
虚心念桃完成签到,获得积分10
5秒前
加油发布了新的文献求助10
5秒前
感动书竹完成签到 ,获得积分10
6秒前
JinlongFan完成签到 ,获得积分10
7秒前
小鲸鱼完成签到 ,获得积分10
7秒前
阿芙乐尔完成签到 ,获得积分10
7秒前
小秋发布了新的文献求助10
8秒前
勤恳天寿完成签到,获得积分10
9秒前
秦磊完成签到,获得积分10
9秒前
忆之完成签到,获得积分10
9秒前
11秒前
一川烟叶完成签到,获得积分10
11秒前
majf完成签到,获得积分10
12秒前
称心豁完成签到,获得积分10
13秒前
倪满分完成签到,获得积分10
14秒前
尊敬灵松发布了新的文献求助10
14秒前
mm完成签到,获得积分10
15秒前
16秒前
天涯明月完成签到,获得积分10
17秒前
hammer_zhang完成签到,获得积分10
17秒前
Maike完成签到,获得积分10
17秒前
nn完成签到,获得积分10
17秒前
研友_LX06oL完成签到,获得积分10
17秒前
hx完成签到 ,获得积分10
18秒前
18秒前
乐乐应助科研通管家采纳,获得30
18秒前
冰糖葫芦娃完成签到,获得积分10
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788474
求助须知:如何正确求助?哪些是违规求助? 3333791
关于积分的说明 10263810
捐赠科研通 3049776
什么是DOI,文献DOI怎么找? 1673652
邀请新用户注册赠送积分活动 802148
科研通“疑难数据库(出版商)”最低求助积分说明 760526