Self-Supervised Graph Attention Networks for Deep Weighted Multi-View Clustering

计算机科学 聚类分析 加权 人工智能 图形 机器学习 数据挖掘 图嵌入 特征学习 聚类系数 嵌入 模式识别(心理学) 理论计算机科学 放射科 医学
作者
Zongmo Huang,Yazhou Ren,Xiaorong Pu,Shudong Huang,Zenglin Xu,Lifang He
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:37 (7): 7936-7943 被引量:15
标识
DOI:10.1609/aaai.v37i7.25960
摘要

As one of the most important research topics in the unsupervised learning field, Multi-View Clustering (MVC) has been widely studied in the past decade and numerous MVC methods have been developed. Among these methods, the recently emerged Graph Neural Networks (GNN) shine a light on modeling both topological structure and node attributes in the form of graphs, to guide unified embedding learning and clustering. However, the effectiveness of existing GNN-based MVC methods is still limited due to the insufficient consideration in utilizing the self-supervised information and graph information, which can be reflected from the following two aspects: 1) most of these models merely use the self-supervised information to guide the feature learning and fail to realize that such information can be also applied in graph learning and sample weighting; 2) the usage of graph information is generally limited to the feature aggregation in these models, yet it also provides valuable evidence in detecting noisy samples. To this end, in this paper we propose Self-Supervised Graph Attention Networks for Deep Weighted Multi-View Clustering (SGDMC), which promotes the performance of GNN-based deep MVC models by making full use of the self-supervised information and graph information. Specifically, a novel attention-allocating approach that considers both the similarity of node attributes and the self-supervised information is developed to comprehensively evaluate the relevance among different nodes. Meanwhile, to alleviate the negative impact caused by noisy samples and the discrepancy of cluster structures, we further design a sample-weighting strategy based on the attention graph as well as the discrepancy between the global pseudo-labels and the local cluster assignment. Experimental results on multiple real-world datasets demonstrate the effectiveness of our method over existing approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Wind完成签到,获得积分10
1秒前
小肆完成签到 ,获得积分10
1秒前
2秒前
SciGPT应助周伊采纳,获得10
2秒前
coc发布了新的文献求助10
2秒前
慕青应助薛定谔的猫采纳,获得10
3秒前
3秒前
英姑应助Jade采纳,获得10
3秒前
没有伞的青春完成签到 ,获得积分10
3秒前
3秒前
深情安青应助项脊轩采纳,获得10
3秒前
xiaofutongxue完成签到,获得积分10
4秒前
小张发布了新的文献求助10
4秒前
机灵柚子应助mwy采纳,获得10
4秒前
4秒前
学术小白发布了新的文献求助10
5秒前
kelly发布了新的文献求助10
5秒前
白色梨花发布了新的文献求助10
6秒前
6秒前
无敌发布了新的文献求助10
7秒前
科研通AI5应助刚睡醒采纳,获得10
7秒前
ZYC发布了新的文献求助10
7秒前
7秒前
科研通AI5应助内向苠采纳,获得10
8秒前
8秒前
兑润泽完成签到,获得积分10
9秒前
风中的青发布了新的文献求助10
9秒前
123456发布了新的文献求助10
9秒前
9秒前
高高白曼舞完成签到,获得积分10
9秒前
FunHigh发布了新的文献求助10
9秒前
lixiang完成签到,获得积分10
10秒前
10秒前
qu发布了新的文献求助20
10秒前
内向乾完成签到,获得积分10
10秒前
苹果完成签到,获得积分20
10秒前
mengzhao完成签到,获得积分10
10秒前
10秒前
栀尽夏完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中国兽药产业发展报告 1000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4418757
求助须知:如何正确求助?哪些是违规求助? 3899666
关于积分的说明 12126839
捐赠科研通 3545653
什么是DOI,文献DOI怎么找? 1945674
邀请新用户注册赠送积分活动 985890
科研通“疑难数据库(出版商)”最低求助积分说明 882262