人工神经网络
反问题
反向
解算器
计算机科学
算法
应用数学
数学
数学分析
人工智能
几何学
程序设计语言
作者
Stepan P. Pokatov,T. Yu. Ivanova,D. A. Ivanov
标识
DOI:10.1088/1612-202x/ace70c
摘要
Abstract We propose an artificial neural network (ANN) design to solve the inverse problem for a 1D Gross–Pitaevskii equation (GPE). More precise, the ANN takes the squared modulus of the stationary GPE solution as an input and returns the parameters of the potential function and the factor in front of the GPE non-linear term. From the physical point of view the ANN predicts the parameters of a trap potential and the interaction constant of 1D Bose–Einstein condensate by its density distribution. Using the results of numerical solution of GPE for more than 30 000 sets of GPE parameters as train and validation datasets we build the ANN as a fast and accurate inverse GPE solver.
科研通智能强力驱动
Strongly Powered by AbleSci AI