High entropy spinel oxides (CrFeMnNiCox)3O4 (x = 2, 3, 4) nanoparticles as anode material towards electrochemical properties

尖晶石 材料科学 纳米颗粒 阳极 化学工程 电化学 氧化物 纳米技术 电极 冶金 物理化学 化学 工程类
作者
Chen Liu,Jianqiang Bi,Lulin Xie,Xicheng Gao,Jiacheng Rong
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:71: 108211-108211 被引量:42
标识
DOI:10.1016/j.est.2023.108211
摘要

The newly discovered inorganic material termed “high-entropy oxides” (HEOs) nanoparticles are made up of diverse metal elements and possesses a single-phase structure. HEOs nanoparticles exhibit numerous advantageous features, including high specific capacity, exceptional cycling performance, remarkable structural stability, and super electronic conductivity. Consequently, HEOs nanoparticles have garnered attention for their potential as electrode materials for lithium-ion batteries (LIBs). It is essential to develop HEOs utilizing a range of component-metal elements and thoroughly explore their properties. Transition metal oxides that contain Co have exhibited exceptional electrochemical performance. However, high entropy oxides nanoparticles have the potential to exceed the electrochemical performance of other materials by combining different components. Therefore, to leverage the “cocktail effect” of high entropy materials, we increased the Co content in high entropy oxides and synthesized three sets of high entropy spinel oxides (CrFeMnNiCox)3O4 (x = 2, 3, 4) nanoparticles using the solution combustion method. The results show that the three obtained samples have uniform particle size distribution. The reversible capacities at 200 mA·g−1 for (CrFeMnNiCo2)3O4, (CrFeMnNiCo3)3O4 and (CrFeMnNiCo4)3O4 anodes are 467.8 mAh·g−1, 574.1 mAh·g−1 and 506.2 mAh·g−1, respectively. With an increase in the current density, the three sets of samples show gradual changes in their capacities. The high entropy oxides (HEOs) nanoparticles exhibit exceptional cycle stability and rate capability when used as the anode of LIBs. This study proposes a novel approach to create high-entropy energy storage materials, opening up possibilities for future material design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
清风白鹭发布了新的文献求助10
2秒前
2秒前
啊啊啊啊完成签到,获得积分20
2秒前
这位同学不知道叫什么好完成签到,获得积分10
2秒前
缓慢笑柳完成签到,获得积分20
3秒前
函数完成签到 ,获得积分10
4秒前
Alice发布了新的文献求助50
4秒前
搞怪的绿柳完成签到,获得积分10
4秒前
西瓜发布了新的文献求助20
5秒前
ding应助隐形烤鸡采纳,获得10
5秒前
FashionBoy应助enen采纳,获得10
6秒前
wyx完成签到,获得积分10
8秒前
zino发布了新的文献求助10
8秒前
8秒前
Lucky应助超级泡泡采纳,获得10
10秒前
10秒前
11秒前
荷包蛋完成签到 ,获得积分10
11秒前
whf完成签到,获得积分10
12秒前
12秒前
千日粉发布了新的文献求助10
12秒前
汉堡包应助结实的慕凝采纳,获得10
13秒前
bkagyin应助lll采纳,获得10
14秒前
李爱国应助务实小鸽子采纳,获得10
14秒前
14秒前
博修发布了新的文献求助10
15秒前
Agernon发布了新的文献求助10
15秒前
科研通AI5应助gbw123采纳,获得10
15秒前
科研通AI5应助ncjdoi采纳,获得10
16秒前
WD完成签到,获得积分20
16秒前
陶醉的鹏煊完成签到,获得积分10
16秒前
关雎发布了新的文献求助10
17秒前
没名字qqq应助Jiangzhibing采纳,获得50
17秒前
小马甲应助Jiangzhibing采纳,获得10
17秒前
17秒前
17秒前
翟威发布了新的文献求助10
17秒前
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4146441
求助须知:如何正确求助?哪些是违规求助? 3683040
关于积分的说明 11637781
捐赠科研通 3376020
什么是DOI,文献DOI怎么找? 1853524
邀请新用户注册赠送积分活动 915969
科研通“疑难数据库(出版商)”最低求助积分说明 830112