High entropy spinel oxides (CrFeMnNiCox)3O4 (x = 2, 3, 4) nanoparticles as anode material towards electrochemical properties

尖晶石 材料科学 纳米颗粒 阳极 化学工程 电化学 氧化物 纳米技术 电极 冶金 物理化学 化学 工程类
作者
Chen Liu,Jianqiang Bi,Lulin Xie,Xicheng Gao,Jiacheng Rong
出处
期刊:Journal of energy storage [Elsevier]
卷期号:71: 108211-108211 被引量:6
标识
DOI:10.1016/j.est.2023.108211
摘要

The newly discovered inorganic material termed “high-entropy oxides” (HEOs) nanoparticles are made up of diverse metal elements and possesses a single-phase structure. HEOs nanoparticles exhibit numerous advantageous features, including high specific capacity, exceptional cycling performance, remarkable structural stability, and super electronic conductivity. Consequently, HEOs nanoparticles have garnered attention for their potential as electrode materials for lithium-ion batteries (LIBs). It is essential to develop HEOs utilizing a range of component-metal elements and thoroughly explore their properties. Transition metal oxides that contain Co have exhibited exceptional electrochemical performance. However, high entropy oxides nanoparticles have the potential to exceed the electrochemical performance of other materials by combining different components. Therefore, to leverage the “cocktail effect” of high entropy materials, we increased the Co content in high entropy oxides and synthesized three sets of high entropy spinel oxides (CrFeMnNiCox)3O4 (x = 2, 3, 4) nanoparticles using the solution combustion method. The results show that the three obtained samples have uniform particle size distribution. The reversible capacities at 200 mA·g−1 for (CrFeMnNiCo2)3O4, (CrFeMnNiCo3)3O4 and (CrFeMnNiCo4)3O4 anodes are 467.8 mAh·g−1, 574.1 mAh·g−1 and 506.2 mAh·g−1, respectively. With an increase in the current density, the three sets of samples show gradual changes in their capacities. The high entropy oxides (HEOs) nanoparticles exhibit exceptional cycle stability and rate capability when used as the anode of LIBs. This study proposes a novel approach to create high-entropy energy storage materials, opening up possibilities for future material design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喵总发布了新的文献求助20
2秒前
Ava应助紧张的芒果采纳,获得10
4秒前
7秒前
yudandan@CJLU发布了新的文献求助10
8秒前
10秒前
12秒前
16秒前
16秒前
愉快雅彤完成签到 ,获得积分10
18秒前
潘健康完成签到,获得积分10
20秒前
21秒前
22秒前
懵懂的沛珊完成签到,获得积分20
22秒前
25秒前
27秒前
虚幻的机器猫完成签到 ,获得积分10
28秒前
尹冰露完成签到,获得积分10
29秒前
李健的小迷弟应助123采纳,获得10
29秒前
35秒前
可爱迪应助骆驼德96933采纳,获得10
35秒前
彭于晏应助顺利的曼寒采纳,获得10
35秒前
jingcheng完成签到,获得积分10
36秒前
37秒前
41秒前
lili完成签到,获得积分20
41秒前
SciGPT应助khada采纳,获得10
48秒前
48秒前
liwai发布了新的文献求助10
51秒前
小猫多鱼完成签到,获得积分10
51秒前
诸沧海发布了新的文献求助10
52秒前
54秒前
55秒前
56秒前
liwai完成签到,获得积分10
57秒前
58秒前
向雨竹发布了新的文献求助10
59秒前
yeluoyezhi完成签到,获得积分10
59秒前
乔心发布了新的文献求助10
59秒前
khada发布了新的文献求助10
1分钟前
耐n发布了新的文献求助10
1分钟前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Mechanical Methods of the Activation of Chemical Processes 510
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2417891
求助须知:如何正确求助?哪些是违规求助? 2109859
关于积分的说明 5336710
捐赠科研通 1837017
什么是DOI,文献DOI怎么找? 914829
版权声明 561080
科研通“疑难数据库(出版商)”最低求助积分说明 489249