Estimation of bloodstain deposition time within a 24-h day-night cycle with rhythmic mRNA based on a machine learning algorithm

节奏 人工智能 沉积(地质) 算法 信使核糖核酸 实时聚合酶链反应 计算机科学 生物 机器学习 基因 遗传学 医学 内科学 古生物学 沉积物
作者
Feng Cheng,Wanting Li,Zhimin Ji,Junli Li,Wenjing Hu,Mengyang Zhao,Daijing Yu,Halimureti Simayijiang,Jiangwei Yan
出处
期刊:Forensic Science International-genetics [Elsevier]
卷期号:66: 102910-102910 被引量:6
标识
DOI:10.1016/j.fsigen.2023.102910
摘要

Estimating the time that bloodstains are left at a crime scene can provide invaluable evidence for law enforcement investigations, including determining the time of the crime, linking the perpetrator to the crime scene, narrowing the pool of possible suspects, and verifying witness statements. There have been some attempts to estimate the time since deposition of bloodstains, i.e., how much time has passed since the bloodstain was left at a crime scene. However, most studies focus on the time interval of days. As far as we know, previous study have been conducted to estimate the deposition time of blood within a 24-h day-night cycle. To date, there is a lack of studies on whether rhythmic mRNA of blood is suitable for bloodstain samples. In this study, we estimated the bloodstain deposition time within a 24-h day-night cycle based on the expression of messenger RNAs (mRNAs) by real-time quantitative polymerase chain reaction. Bloodstain samples were prepared from eight individuals at eight time points under real and uncontrolled conditions. Four mRNAs expressed rhythmically and were used to construct a regression model using the k-nearest neighbor (KNN) algorithm, resulting in a mean absolute error of 3.92 h. Overall, using the rhythmic mRNAs, a machine learning model was developed which has allowed us to predict the deposition time of bloodstains within the 24-h day-night cycle in East Asian populations. This study demonstrates that mRNA biomarkers can be used to estimate the bloodstain deposition time within a 24-h period. Furthermore, rhythmic mRNA biomarkers provide a potential method and perspective for estimating the deposition time of forensic traces in forensic investigation. Case samples in forensic analysis are usually limited or degraded, so the stability and sensitivity of rhythmic biomarkers need to be further investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助严天飞采纳,获得10
1秒前
1秒前
朴素珩发布了新的文献求助10
2秒前
酷波er应助丰富黄豆采纳,获得10
2秒前
大大大同完成签到,获得积分20
3秒前
3秒前
4秒前
慵懒的树完成签到,获得积分20
4秒前
5秒前
Dillen发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
善学以致用应助Planck采纳,获得10
7秒前
QXY发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
LeeSunE完成签到,获得积分10
9秒前
顺心夜阑发布了新的文献求助10
9秒前
10秒前
小李子完成签到 ,获得积分10
10秒前
yuyuyu关注了科研通微信公众号
10秒前
考博圣体发布了新的文献求助10
10秒前
WuLunbi发布了新的文献求助10
10秒前
香蕉觅云应助科研小白鼠采纳,获得30
11秒前
曲沉鱼发布了新的文献求助10
11秒前
找文献呢发布了新的文献求助10
11秒前
耍酷巧蕊完成签到,获得积分20
12秒前
大气凝云发布了新的文献求助10
12秒前
12秒前
严天飞发布了新的文献求助10
12秒前
深情安青应助大大大同采纳,获得10
13秒前
求助人员应助简7采纳,获得30
13秒前
13秒前
Jie发布了新的文献求助10
14秒前
14秒前
mumumu关注了科研通微信公众号
15秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679900
求助须知:如何正确求助?哪些是违规求助? 4994585
关于积分的说明 15171123
捐赠科研通 4839670
什么是DOI,文献DOI怎么找? 2593541
邀请新用户注册赠送积分活动 1546594
关于科研通互助平台的介绍 1504721