糖萼
细胞生物学
SIRT3
化学
生物
生物化学
NAD+激酶
酶
锡尔图因
作者
Lei Zhang,Jiajia Li,Jun Chen,Lei Jin,Zhiyi Yuan,Jun Zhang,Zhaohong Liu,Chao Yu,Limei Ma
标识
DOI:10.1016/j.cellsig.2023.110790
摘要
Glycocalyx coating on endothelial surface layer helps to sense shear forces and maintain endothelial function. However, the underlying mechanism of endothelial glycocalyx degradation upon disordered shear stress stimulation is not fully understood. SIRT3, a major NAD+-dependent protein deacetylases, is required for protein stability during vascular homeostasis and partly involved in atherosclerotic process. While few studies showed that SIRT3 is responsible for endothelial glycocalyx homeostasis under shear stress, the underlying mechanisms remain largely unknown. Here, we demonstrated that oscillatory shear stress (OSS) induces glycocalyx injury by activating LKB1/p47phox/Hyal2 axis both in vivo and in vitro. And O-GlcNAc modification served to prolong SIRT3 deacetylase activity and stabilized p47/Hyal2 complex. OSS could decrease SIRT3 O-GlcNAcylation to activate LKB1, further accelerated endothelial glycocalyx injury in inflammatory microenvironment. SIRT3Ser329 mutation or inhibition of SIRT3 O-GlcNAcylation strongly promoted glycocalyx degradation. On the contrary, overexpression of SIRT3 reverse glycocalyx damage upon OSS treatment. Together, our findings indicated that targeting O-GlcNAcylation of SIRT3 could prevent and/or treat diseases whereby glycocalyx injured.
科研通智能强力驱动
Strongly Powered by AbleSci AI