Integrative Approach for Efficient Detection of Kidney Stones based on Improved Deep Neural Network Architecture

建筑 人工神经网络 计算机科学 人工智能 肾结石 计算机体系结构 医学 内科学 地理 考古
作者
Monali Gulhane,Sandeep Kumar,Shilpa Choudhary,Nitin Rakesh,Ye Zhu,Mandeep Kaur,Chanderdeep Tandon,Thippa Reddy Gadekallu
标识
DOI:10.1016/j.slast.2024.100159
摘要

In today's digital world, with growing population and increasing pollution, unhealthy lifestyle habits like irregular eating, junk food consumption, and lack of exercise are becoming more common, leading to various health problems, including kidney issues. These factors directly affect human kidney health. To address this, we require early detection techniques that rely on text data. Text data contains detailed information about a patient's medical history, symptoms, test results, and treatment plans, giving a complete picture of kidney health and enabling timely intervention. In this research paper, we proposed a range of sophisticated models, such as Gradient Boosting Classifier, Light GBM, CatBoost, Support Vector Classifier (SVC), Random Boost, Logistic Regression, XGBoost, Deep Neural Network (DNN), and an Improved DNN. The Improved DNN demonstrated exceptional performance, with an accuracy of 90%, precision of 89%, recall of 90%, and an F1-Score of 89.5%. By combining traditional machine learning and deep neural networks, this integrative approach enables the identification of intricate patterns in datasets. The model's data-driven processes consistently update internal parameters, guaranteeing flexibility in response to evolving healthcare settings. This research represents a notable advancement in the progress of creating a more detailed and individualised ability to diagnose kidney stones, which could potentially lead to better clinical results and patient treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
淡定无施完成签到,获得积分10
1秒前
maqin完成签到,获得积分10
1秒前
1秒前
2秒前
赵欣阳完成签到 ,获得积分10
2秒前
八十完成签到,获得积分10
3秒前
4秒前
科目三应助专注的可乐采纳,获得10
4秒前
maqin发布了新的文献求助10
4秒前
白河夜船发布了新的文献求助10
4秒前
4秒前
小白系列产品完成签到,获得积分20
5秒前
linsns完成签到 ,获得积分10
5秒前
赵小麦发布了新的文献求助10
5秒前
怡然思萱发布了新的文献求助10
5秒前
5秒前
轩辕唯雪发布了新的文献求助10
6秒前
熙熙完成签到 ,获得积分10
6秒前
6秒前
王宁欣发布了新的文献求助10
6秒前
浩浩桑发布了新的文献求助10
6秒前
xlj发布了新的文献求助10
6秒前
7秒前
Ava应助科研人采纳,获得10
7秒前
7秒前
CipherSage应助开心的白昼采纳,获得10
7秒前
7秒前
8秒前
Roxie完成签到,获得积分10
8秒前
8秒前
8秒前
xiaoxiao发布了新的文献求助10
9秒前
9秒前
彩色青亦发布了新的文献求助10
10秒前
10秒前
尊敬忆秋发布了新的文献求助10
10秒前
10秒前
CiCi发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559624
求助须知:如何正确求助?哪些是违规求助? 3986027
关于积分的说明 12341437
捐赠科研通 3656691
什么是DOI,文献DOI怎么找? 2014540
邀请新用户注册赠送积分活动 1049268
科研通“疑难数据库(出版商)”最低求助积分说明 937586