Zero-shot knowledge transfer for seismic damage diagnosis through multi-channel 1D CNN integrated with autoencoder-based domain adaptation

自编码 零(语言学) 适应(眼睛) 频道(广播) 域适应 计算机科学 领域(数学分析) 人工智能 模式识别(心理学) 地质学 物理 数学 人工神经网络 电信 光学 数学分析 语言学 哲学 分类器(UML)
作者
Qingsong Xiong,Qingzhao Kong,Haibei Xiong,Jiawei Chen,Cheng Yuan,Xiaoyou Wang,Yong Xia
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:217: 111535-111535 被引量:2
标识
DOI:10.1016/j.ymssp.2024.111535
摘要

Accurate and timely structural damage diagnosis is crucial to efficient disaster response and city renovation in post-earthquake events. The scarcity of labeled data hinders the powerful deep learning techniques from in-domain damage detection on target structures. Cross-domain transfer learning has emerged as a captivating strategy through digging knowledge from the abundant source domain to detect the damage in the target domain. However, the heterogeneity among multi-domain structures poses the challenge in seismic damage diagnosis. This study proposes a novel zero-shot knowledge transfer approach for seismic damage diagnosis through multi-channel one-dimensional convolutional neural networks (1D CNN) integrated with deep autoencoder (DAE)-based domain adaptation (DA). The framework consists of three modules, namely, data preprocessor adaptive to seismic vibration signals, DAE-based DA module, and damage diagnosis via multi-channel 1D CNN. The DA module is customized to seamlessly translate the unseen target-domain data to mimic latent representation via a DAE pretrained on the source data, thus realizing rigorous zero-shot learning. Imbalanced data distribution is also considered during the network training and testing. Two representative phases of knowledge transfer are performed to substantiate the knowledge transferability of the proposed method. The first phase involves multi-class damage quantification on two ASCE benchmark models from the simplified model to the refined one, and the second phase conducts binary damage detection on a three-story reinforced frame structure from the finite element numerical model to the laboratory-tested physical model. Both examples show that the proposed method exhibits high prediction accuracy and a lower false negative rate in achieving zero-shot knowledge transfer for cross-domain structural damage diagnosis. With a delicate network design for diverse data, the proposed knowledge transfer framework can be further extended from the present zero-shot approach to the few-shot learning paradigm, thus suggesting a feasible algorithm adaptability and promising engineering applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
倪妮关注了科研通微信公众号
刚刚
1秒前
霸气傲蕾发布了新的文献求助10
2秒前
2秒前
科研小白完成签到,获得积分10
2秒前
injuly完成签到,获得积分10
3秒前
4秒前
ljforever完成签到,获得积分10
4秒前
Timezzz完成签到,获得积分10
5秒前
6秒前
科研小白发布了新的文献求助10
7秒前
orixero应助赵子骏采纳,获得10
7秒前
Timezzz发布了新的文献求助10
8秒前
菜菜发布了新的文献求助10
8秒前
道阻且长完成签到,获得积分10
8秒前
musong发布了新的文献求助10
9秒前
Lv完成签到 ,获得积分10
9秒前
桐桐应助Gxx采纳,获得10
9秒前
DE2022发布了新的文献求助10
9秒前
科研通AI5应助忐忑的源智采纳,获得10
10秒前
10秒前
10秒前
11秒前
阿尼发布了新的文献求助10
12秒前
爱静静应助轻松蘑菇采纳,获得10
12秒前
ding应助zgnh采纳,获得50
13秒前
14秒前
玄仙发布了新的文献求助10
16秒前
hivivian发布了新的文献求助10
16秒前
DE2022完成签到,获得积分10
16秒前
conan发布了新的文献求助10
17秒前
17秒前
霸气傲蕾完成签到,获得积分20
19秒前
20秒前
HN洪完成签到,获得积分10
21秒前
orixero应助明亮的小馒头采纳,获得10
21秒前
23秒前
轻松蘑菇完成签到,获得积分10
24秒前
reeves完成签到,获得积分10
24秒前
星星完成签到,获得积分10
25秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801662
求助须知:如何正确求助?哪些是违规求助? 3347472
关于积分的说明 10333809
捐赠科研通 3063618
什么是DOI,文献DOI怎么找? 1681974
邀请新用户注册赠送积分活动 807820
科研通“疑难数据库(出版商)”最低求助积分说明 763921