Deep learning in cropland field identification: A review

鉴定(生物学) 领域(数学) 深度学习 环境科学 人工智能 计算机科学 遥感 工程类 机器学习 地质学 数学 生物 植物 纯数学
作者
Fan Xu,Xiaochuang Yao,Kangxin Zhang,Hao Yang,Quanlong Feng,Ying Li,Shuai Yan,Bingbo Gao,Shaoshuai Li,Jianyu Yang,Chao Zhang,Yahui Lv,Dehai Zhu,Sijing Ye
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:222: 109042-109042 被引量:6
标识
DOI:10.1016/j.compag.2024.109042
摘要

The cropland field (CF) is the basic unit of agricultural production and a key element of precision agriculture. High-precision delineations of CF boundaries provide a reliable data foundation for field labor and mechanized operations. In recent years, with the dual advancements in remote sensing satellite technology and artificial intelligence, enabling the extraction of CF information on a wide scale and with high precision, research on CF identification based on deep learning (DL) has emerged as a highly esteemed direction in this field. To comprehend the developmental trends within this field, this study employs bibliometric and content analysis methods to comprehensively review and analyze DL research in the field of CF identification from various perspectives. Initially, 93 relevant literature pieces were retrieved and screened from two databases, the Web of Science Core Collection and the Chinese Science Citation Database, for review. The previous studies underwent quantitative analysis using bibliometric software across five dimensions: publication year, literature type and publication journal, country, author, and keyword. Subsequently, we analyze the current status and trends of employing DL in the field of CF identification from four perspectives: remote sensing data sources, DL models, types of CF extraction results, and sample datasets. Simultaneously, we combed through current publicly available sample datasets and data products that can be referenced to produce sample datasets for CFs. Finally, the challenges and future research focus of DL-based CF identification research are discussed. This paper provides both qualitative and quantitative analyses of research on DL-based CF identification, elucidating the current status, development trends, challenges, and future research focuses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huanhuan发布了新的文献求助10
1秒前
冷酷的乐驹完成签到 ,获得积分10
2秒前
星辰发布了新的文献求助10
3秒前
5秒前
王可完成签到,获得积分20
15秒前
彭于晏应助44采纳,获得10
15秒前
今后应助wocala采纳,获得10
16秒前
19秒前
huanhuan完成签到,获得积分10
21秒前
yufanhui应助依依不舍采纳,获得10
21秒前
诚心毛豆发布了新的文献求助10
24秒前
轻松的芯完成签到 ,获得积分10
25秒前
lqy完成签到 ,获得积分10
27秒前
27秒前
xxx完成签到,获得积分20
29秒前
29秒前
伟钧完成签到,获得积分10
32秒前
小橙子发布了新的文献求助10
33秒前
33秒前
3D发布了新的文献求助10
34秒前
35秒前
李泽中完成签到,获得积分10
38秒前
淡然胡萝卜完成签到,获得积分10
40秒前
Mint发布了新的文献求助10
40秒前
Lucas应助打工仔采纳,获得10
41秒前
CC应助yzm采纳,获得10
42秒前
六零九一完成签到,获得积分10
42秒前
高级后勤完成签到,获得积分10
43秒前
43秒前
曾泳钧完成签到,获得积分10
45秒前
45秒前
浪者漫心完成签到,获得积分10
45秒前
JamesPei应助天空采纳,获得10
45秒前
培培完成签到 ,获得积分10
46秒前
FashionBoy应助大山采纳,获得10
47秒前
香蕉觅云应助曾经的便当采纳,获得10
48秒前
浪者漫心发布了新的文献求助30
49秒前
50秒前
cxy发布了新的文献求助10
53秒前
44发布了新的文献求助10
54秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805315
求助须知:如何正确求助?哪些是违规求助? 3350274
关于积分的说明 10348210
捐赠科研通 3066165
什么是DOI,文献DOI怎么找? 1683589
邀请新用户注册赠送积分活动 809064
科研通“疑难数据库(出版商)”最低求助积分说明 765214