三阴性乳腺癌
成纤维细胞生长因子受体1
化学
虚拟筛选
乳腺癌转移
癌症研究
癌变
转移
乳腺癌
药物发现
分子动力学
计算生物学
抑制性突触后电位
癌症
生物化学
神经科学
癌症转移
基因
生物
遗传学
受体
成纤维细胞生长因子
计算化学
作者
Yuchen Wang,Zheyuan Shen,Roufen Chen,Xinglong Chi,Wenjie Li,Donghang Xu,Lu Yan,Jianjun Ding,Xiaowu Dong,Xiaoli Zheng
标识
DOI:10.1016/j.bioorg.2024.107553
摘要
The overexpression of FGFR1 is thought to significantly contribute to the progression of triple-negative breast cancer (TNBC), impacting aspects such as tumorigenesis, growth, metastasis, and drug resistance. Consequently, the pursuit of effective inhibitors for FGFR1 is a key area of research interest. In response to this need, our study developed a hybrid virtual screening method. Utilizing KarmaDock, an innovative algorithm that blends deep learning with molecular docking, alongside Schrödinger's Residue Scanning. This strategy led us to identify compound 6, which demonstrated promising FGFR1 inhibitory activity, evidenced by an IC
科研通智能强力驱动
Strongly Powered by AbleSci AI