Depth-Enhancement Network for Monocular 3D object detection

单眼 人工智能 计算机视觉 计算机科学 对象(语法) 目标检测 模式识别(心理学)
作者
Guohua Liu,Haiyang Lian,Changrui Guo
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 095405-095405
标识
DOI:10.1088/1361-6501/ad50f6
摘要

Abstract To accurately obtain 3D information, the correct use of depth data is crucial. Compared with radar-based methods, detecting objects in 3D space in a single image is extremely challenging due to the lack of depth cues. However, monocular 3D object detection provides a more economical solution. Traditional monocular 3D object detection methods often rely on geometric constraints, such as key points, object shape relationships and 3D to 2D optimization, to address the inherent lack of depth information. However, these methods still make it challenging to extract rich information directly from depth estimation for fusion. To fundamentally enhance the ability of monocular 3D object detection, we propose a monocular 3D object detection network based on depth information enhancement. The network learns object detection and depth estimation tasks simultaneously through a unified framework, integrates depth features as auxiliary information into the detection branch, and then constrains and enhances them to obtain better spatial representation. To this end, we introduce a new cross-modal fusion strategy, which realizes a more reasonable fusion of cross-modal information by exploring redundant, complementary information and their interactions between RGB features and depth features. Extensive experiments on the KITTI dataset show that our method can significantly improve the performance of monocular 3D object detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
风中冰香应助JM采纳,获得10
刚刚
1秒前
浮游应助勤奋以蓝采纳,获得10
2秒前
CC完成签到,获得积分10
2秒前
酷波er应助2Q采纳,获得10
2秒前
MrTang应助庙庙采纳,获得10
3秒前
3秒前
3秒前
跳动的蓝精灵完成签到,获得积分10
3秒前
FLyu完成签到,获得积分10
3秒前
华仔应助悦耳的书雪采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
xiaoxiao完成签到,获得积分10
4秒前
4秒前
大模型应助金2022采纳,获得10
4秒前
一条帅龙龙完成签到,获得积分20
4秒前
6秒前
大黎发布了新的文献求助30
6秒前
yangtao199发布了新的文献求助10
6秒前
lazy完成签到,获得积分20
6秒前
窝窝头完成签到,获得积分10
6秒前
休亮完成签到,获得积分10
7秒前
英俊的铭应助Dai JZ采纳,获得10
7秒前
高兴紫菱发布了新的文献求助10
8秒前
精明秋完成签到,获得积分10
8秒前
Scout发布了新的文献求助10
8秒前
英俊的铭应助王胖胖采纳,获得10
9秒前
无花果应助无情的南琴采纳,获得10
9秒前
10秒前
john完成签到,获得积分10
10秒前
饼干完成签到,获得积分10
10秒前
yansiyu发布了新的文献求助10
10秒前
wonderbgt完成签到,获得积分10
11秒前
11秒前
澳大利亚发布了新的文献求助10
11秒前
大意的罡完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434707
求助须知:如何正确求助?哪些是违规求助? 4547028
关于积分的说明 14205727
捐赠科研通 4467036
什么是DOI,文献DOI怎么找? 2448402
邀请新用户注册赠送积分活动 1439329
关于科研通互助平台的介绍 1416068