亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Contaminant Transport Modeling and Source Attribution With Attention‐Based Graph Neural Network

归属 人工神经网络 计算机科学 环境科学 图形 人工智能 理论计算机科学 心理学 社会心理学
作者
Min Pang,Erhu Du,Chunmiao Zheng
出处
期刊:Water Resources Research [Wiley]
卷期号:60 (6) 被引量:22
标识
DOI:10.1029/2023wr035278
摘要

Abstract Groundwater contamination induced by anthropogenic activities has long been a global issue. Characterizing and modeling contaminant transport processes is crucial to groundwater protection and management. However, challenges still exist in process complexity, data constraint, and computational cost. In the era of big data, the growth of machine learning has led to new opportunities in studying contaminant transport in groundwater systems. In this work, we introduce a new attention‐based graph neural network (aGNN) for modeling contaminant transport with limited monitoring data and quantifying causal connections between contaminant sources (drivers) and their spreading (outcomes). In five synthetic case studies that involve varying monitoring networks in heterogeneous aquifers, aGNN is shown to outperform LSTM‐based (long‐short term memory) and CNN‐ based (convolutional neural network) methods in multistep predictions (i.e., transductive learning). It also demonstrates a high level of applicability in inferring observations for unmonitored sites (i.e., inductive learning). Furthermore, an explanatory analysis based on aGNN quantifies the influence of each contaminant source, which has been validated by a physics‐based model with consistent outcomes with an R 2 value exceeding 92%. The major advantage of aGNN is that it not only has a high level of predictive power in multiple scenario evaluations but also substantially reduces computational cost. Overall, this study shows that aGNN is efficient and robust for highly nonlinear spatiotemporal learning in subsurface contaminant transport, and provides a promising tool for groundwater management involving contaminant source attribution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辰昜完成签到,获得积分10
1秒前
46秒前
galanodel99发布了新的文献求助20
55秒前
1分钟前
wearelulu完成签到,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
hugeyoung完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
阿瓜师傅完成签到 ,获得积分10
2分钟前
酷酷海豚完成签到,获得积分10
2分钟前
2分钟前
betsydouglas14完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
cf发布了新的文献求助10
2分钟前
包容哑铃发布了新的文献求助10
2分钟前
BowieHuang应助galanodel99采纳,获得30
3分钟前
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
酷波er应助科研通管家采纳,获得10
3分钟前
3分钟前
阔达的沛文完成签到,获得积分10
4分钟前
4分钟前
浮游应助科研通管家采纳,获得10
5分钟前
wanci应助科研通管家采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
dream完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
小一发布了新的文献求助10
6分钟前
研友_850aeZ完成签到,获得积分0
6分钟前
6分钟前
gtgyh发布了新的文献求助10
6分钟前
JamesPei应助gtgyh采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522847
求助须知:如何正确求助?哪些是违规求助? 4613668
关于积分的说明 14539186
捐赠科研通 4551459
什么是DOI,文献DOI怎么找? 2494252
邀请新用户注册赠送积分活动 1475173
关于科研通互助平台的介绍 1446639