Retrieval-Augmented Generation–Enabled GPT-4 for Clinical Trial Screening

临床试验 计算机科学 计算生物学 医学 情报检索 环境科学 生物 内科学
作者
Ozan Ünlü,Jiyeon Shin,Charlotte Mailly,Michael Oates,Michela Tucci,Matthew Varugheese,Kavishwar B. Wagholikar,Fei Wang,Benjamin M. Scirica,Alexander Blood,Samuel Aronson
标识
DOI:10.1056/aioa2400181
摘要

BackgroundScreening participants in clinical trials is an error-prone and labor-intensive process that requires significant time and resources. Large language models such as generative pretrained transformer 4 (GPT-4) present an opportunity to enhance the screening process with advanced natural language processing. This study evaluates the utility of a Retrieval-Augmented Generation (RAG)–enabled GPT-4 system to improve the accuracy, efficiency, and reliability of screening for a trial involving patients with symptomatic heart failure.MethodsThe ongoing Co-Operative Program for Implementation of Optimal Therapy in Heart Failure (COPILOT-HF; ClinicalTrials.gov number, NCT05734690) trial identifies potential participants through electronic health record (EHR) queries followed by manual reviews by trained but nonlicensed study staff. To determine patient eligibility for the COPILOT-HF study that is not identifiable by structured EHR queries, we developed RAG-Enabled Clinical Trial Infrastructure for Inclusion Exclusion Review (RECTIFIER), a clinical note–based, question-answering system powered by RAG and GPT-4. We used clinical notes on 100, 282, and 1894 patients for development, validation, and test datasets, respectively. An expert clinician conducted a blinded review to establish "gold standard" answers to 13 target criteria questions. We calculated performance metrics (sensitivity, specificity, accuracy, and Matthews correlation coefficient [MCC]) in determining patient eligibility for each target criterion and for each of four screening methods (study staff, RECTIFIER with a single-question strategy, RECTIFIER with a combined-question strategy, and RECTIFIER with GPT-3.5 instead of GPT-4).ResultsThe RECTIFIER and COPILOT-HF study staff's answers closely aligned with the expert clinicians' answers across the target criteria, with accuracy ranging between 97.9% and 100% (MCC, 0.837 and 1) for RECTIFIER and between 91.7% and 100% (MCC, 0.644 and 1) for the study staff. RECTIFIER performed better than the study staff in determining symptomatic heart failure, with an accuracy of 97.9% versus 91.7% and an MCC of 0.924 versus 0.721, respectively. Overall, the sensitivity and specificity for determining patient eligibility with RECTIFIER were 92.3% and 93.9%, respectively, and 90.1% and 83.6% with the study staff. With RECTIFIER, the single-question approach to determining eligibility resulted in an average cost of 11 cents per patient, and the combined-question approach resulted in an average cost of 2 cents per patient.ConclusionsLarge language model–based solutions such as RECTIFIER can significantly enhance clinical trial screening performance and reduce costs by automating the screening process. However, integrating such technologies requires careful consideration of potential hazards and should include safeguards such as final clinician review. (Funded by the Accelerator for Clinical Transformation [ACT]; ClinicalTrials.gov number, NCT05734690.)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋裤批发完成签到 ,获得积分10
2秒前
3秒前
lijianguo完成签到,获得积分10
4秒前
5秒前
6秒前
奇拉维特完成签到 ,获得积分10
7秒前
星辰大海应助abbb采纳,获得10
7秒前
科研小兔发布了新的文献求助10
8秒前
踏实一斩发布了新的文献求助10
9秒前
Sailo发布了新的文献求助10
9秒前
clm完成签到 ,获得积分10
10秒前
11秒前
青橘短衫发布了新的文献求助10
15秒前
dingz完成签到,获得积分10
15秒前
16秒前
大橙子发布了新的文献求助10
22秒前
花无双完成签到,获得积分0
23秒前
南北完成签到,获得积分10
26秒前
Felicity完成签到 ,获得积分10
29秒前
华仔应助bqss采纳,获得10
29秒前
哈哈客完成签到,获得积分10
30秒前
风筝鱼完成签到 ,获得积分10
31秒前
魔法师完成签到,获得积分0
32秒前
脑洞疼应助沉默的板凳采纳,获得10
33秒前
mmd完成签到 ,获得积分10
34秒前
是小越啊完成签到,获得积分10
34秒前
37秒前
阮大帅气发布了新的文献求助10
40秒前
活泼新儿完成签到 ,获得积分10
47秒前
爱听歌半山完成签到,获得积分10
49秒前
53秒前
wy.he应助科研通管家采纳,获得10
53秒前
Hello应助科研通管家采纳,获得10
54秒前
Lucas应助科研通管家采纳,获得10
54秒前
pluto应助爱学习的太阳采纳,获得20
54秒前
wy.he应助科研通管家采纳,获得10
54秒前
pluto应助科研通管家采纳,获得10
54秒前
Misea发布了新的文献求助10
54秒前
tutulunzi完成签到,获得积分0
54秒前
完美世界应助谨慎的擎宇采纳,获得30
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325220
关于积分的说明 10221927
捐赠科研通 3040359
什么是DOI,文献DOI怎么找? 1668771
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549