EPI-HAN: Identification of Enhancer Promoter Interaction Using Hierarchical Attention Network

增强子 全基因组关联研究 计算生物学 杠杆(统计) 计算机科学 赫拉 水准点(测量) 人工智能 机器学习 生物 基因 遗传学 转录因子 细胞 单核苷酸多态性 地理 地图学 基因型
作者
Fatma S. Ahmed,Saleh Aly,Xiangrong Liu
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:19
标识
DOI:10.2174/0115748936294743240524113731
摘要

Background: Enhancer-Promoter Interaction (EPI) recognition is crucial for understanding human development and transcriptional regulation. EPI in the genome plays a significant role in regulating gene expression. In Genome-Wide Association Studies (GWAS), EPIs help to improve the mechanistic understanding of disease- or trait-associated genetic variants. Methods: Experimental methods for classifying EPIs are time-consuming and expensive. Consequently, there has been a growing emphasis on research focused on developing computational approaches that leverage deep learning and other machine learning techniques. One of the main challenges in EPI prediction is the long sequences of enhancers and promoters, which most existing computational approaches struggle with. This paper proposes a new deep learning model based on the Hierarchical Attention Network (HAN) for EPI detection. The proposed EPI-HAN model has two unique features: (i) a hybrid embedding strategy (ii) a hierarchical HAN structure comprising two attention layers that operate at both the individual token and smaller sequence levels. Results: In benchmark comparisons, the EPI-HAN model demonstrates superior performance over state-of-the-art methods, as evidenced by AUROC and AUPR metrics for specific cell lines. Specifically, for the cell lines HeLa-S3, HUVEC, and NHEK, the AUROC values are 0.962, 0.946, and 0.987, respectively, and the AUPR values are 0.842, 0.724, and 0.926, respectively. Conclusion: The comparative results indicate that our model surpasses other state-of-the-art models in three out of six cell lines. The Superior performance in recognizing EPIs is attributed to the hierarchical structure of the attention mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lunar完成签到 ,获得积分10
2秒前
4秒前
6秒前
7秒前
万能图书馆应助logo采纳,获得20
8秒前
叮叮车发布了新的文献求助10
11秒前
12秒前
缥缈飞鸟完成签到 ,获得积分10
13秒前
13秒前
14秒前
15秒前
weslywang完成签到,获得积分10
16秒前
LTT发布了新的文献求助10
18秒前
孟醒发布了新的文献求助10
19秒前
灵巧书文发布了新的文献求助30
21秒前
nmm完成签到,获得积分10
23秒前
小虎给离枝的求助进行了留言
23秒前
张雷应助是科研太小了采纳,获得20
24秒前
端庄的萝完成签到,获得积分10
24秒前
无色热带鱼完成签到,获得积分10
24秒前
25秒前
25秒前
26秒前
大福完成签到,获得积分10
27秒前
27秒前
27秒前
666应助念姬采纳,获得10
28秒前
怕孤独的忆南完成签到,获得积分10
28秒前
29秒前
缥缈飞鸟发布了新的文献求助10
29秒前
小二郎应助公孙世往采纳,获得10
29秒前
30秒前
江北小赵完成签到,获得积分10
31秒前
欣喜眼神发布了新的文献求助10
31秒前
香蕉觅云应助活泼的番茄采纳,获得10
31秒前
32秒前
Coraline应助香蕉鸽子采纳,获得20
32秒前
nixx发布了新的文献求助10
33秒前
张雷应助宋鹏浩采纳,获得10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388