Collaborative optimization method of electric heavy truck cluster participating in energy-frequency market

新闻聚合器 投标 网格 能源市场 卡车 收入 计算机科学 环境经济学 汽车工程 运输工程 业务 工程类 电气工程 可再生能源 经济 营销 地理 会计 操作系统 大地测量学
作者
Bangkun Ding,Yunfeng Ma,Ling Ji,Zengqiang Mi
标识
DOI:10.1117/12.3024307
摘要

Under the requirement of low-carbon transformation in transportation, electric heavy truck (EHT) is gradually becoming the mainstream vehicle type for logistics transportation. EHT has a high charging power and a concentrated charging area, which has the potential to provide fast frequency regulation services for the power grid. To address the gaps in existing research on the friendly interaction between EHT and the power grid, research is conducted on the collaborative optimization of EHT cluster participation in the energy-frequency market. By introducing the power fluctuation limiting constant, an optimization model for the EHT response boundary is established based on historical order data. This model evaluates the aggregated response capability of the EHT cluster, which is independent of the formulation of baseline power and effectively controls battery losses. With the goal of maximizing the net revenue of the EHT cluster, a collaborative optimization is conducted for its participation in the energy-frequency market. This optimization supports the declaration of baseline power and frequency regulation capacity for each response period by EHT aggregator the next day. The effectiveness of the model is validated using actual data from a charging station in a logistics park in Hebei, China, providing a reference for the bidding strategy of EHT clusters participating in the energy-frequency market.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
coolkid应助神明采纳,获得10
1秒前
Kayla完成签到,获得积分10
2秒前
illusion完成签到,获得积分10
2秒前
Zyy发布了新的文献求助30
3秒前
Thi发布了新的文献求助10
3秒前
3秒前
大模型应助呵呵呵采纳,获得10
4秒前
皮皮蛙完成签到,获得积分10
4秒前
Kirito应助坐以待毕采纳,获得50
4秒前
5秒前
6秒前
7秒前
9秒前
9秒前
10秒前
10秒前
李健应助受伤芝麻采纳,获得10
11秒前
用头打碟发布了新的文献求助10
12秒前
123完成签到,获得积分10
12秒前
13秒前
Zirong发布了新的文献求助30
13秒前
依妍发布了新的文献求助10
13秒前
14秒前
乐乐应助忧郁雪糕采纳,获得10
14秒前
wen发布了新的文献求助10
14秒前
goodgoodstudy发布了新的文献求助10
14秒前
沐沧澜发布了新的文献求助10
14秒前
14秒前
李二牛完成签到 ,获得积分10
14秒前
黑大帅完成签到,获得积分10
15秒前
123发布了新的文献求助10
15秒前
16秒前
wuqi完成签到 ,获得积分10
16秒前
16秒前
Yxian发布了新的文献求助10
17秒前
用头打碟完成签到,获得积分20
18秒前
19秒前
勤奋谷秋完成签到 ,获得积分10
19秒前
19秒前
雨后阳光发布了新的文献求助10
20秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The direct observation of dislocations 200
Reference Guide for Dynamic Models of HVAC Equipment 200
A Treatise on Hydrostatics and Hydrodynamics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836569
求助须知:如何正确求助?哪些是违规求助? 3378884
关于积分的说明 10506466
捐赠科研通 3098617
什么是DOI,文献DOI怎么找? 1706576
邀请新用户注册赠送积分活动 821075
科研通“疑难数据库(出版商)”最低求助积分说明 772431