Manipulating Local Chemistry and Coherent Structures for High-Rate and Long-Life Sodium-Ion Battery Cathodes

阴极 电池(电) 离子 工程物理 材料科学 化学物理 化学 纳米技术 物理化学 量子力学 冶金 热力学 物理 功率(物理)
作者
Haoji Wang,Hongyi Chen,Yu Mei,Jinqiang Gao,Lianshan Ni,Ningyun Hong,Baichao Zhang,Fangjun Zhu,Jiangnan Huang,Kai Wang,Wentao Deng,Debbie S. Silvester,Craig E. Banks,Sedat Yaşar,Song Bai,Guoqiang Zou,Hongshuai Hou,Xiaobo Ji
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (20): 13150-13163 被引量:29
标识
DOI:10.1021/acsnano.4c02017
摘要

Layered sodium transition-metal (TM) oxides generally suffer from severe capacity decay and poor rate performance during cycling, especially at a high state of charge (SoC). Herein, an insight into failure mechanisms within high-voltage layered cathodes is unveiled, while a two-in-one tactic of charge localization and coherent structures is devised to improve structural integrity and Na+ transport kinetics, elucidated by density functional theory calculations. Elevated Jahn–Teller [Mn3+O6] concentration on the particle surface during sodiation, coupled with intense interlayer repulsion and adverse oxygen instability, leads to irreversible damage to the near-surface structure, as demonstrated by X-ray absorption spectroscopy and in situ characterization techniques. It is further validated that the structural skeleton is substantially strengthened through the electronic structure modulation surrounding oxygen. Furthermore, optimized Na+ diffusion is effectively attainable via regulating intergrown structures, successfully achieved by the Zn2+ inducer. Greatly, good redox reversibility with an initial Coulombic efficiency of 92.6%, impressive rate capability (86.5 mAh g–1 with 70.4% retention at 10C), and enhanced cycling stability (71.6% retention after 300 cycles at 5C) are exhibited in the P2/O3 biphasic cathode. It is believed that a profound comprehension of layered oxides will herald fresh perspectives to develop high-voltage cathode materials for sodium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123456完成签到 ,获得积分10
1秒前
3秒前
3秒前
FanKnight完成签到,获得积分10
4秒前
5秒前
玲玲发布了新的文献求助10
5秒前
上官若男应助ruilong采纳,获得10
5秒前
迪xhja_完成签到 ,获得积分10
5秒前
奉年完成签到,获得积分10
6秒前
dong完成签到,获得积分20
7秒前
8秒前
9秒前
YY完成签到,获得积分10
9秒前
AAa关注了科研通微信公众号
10秒前
orixero应助奥利奥采纳,获得30
11秒前
dong发布了新的文献求助10
11秒前
王小橘发布了新的文献求助10
11秒前
RONG完成签到,获得积分10
12秒前
Jaikaran应助科研通管家采纳,获得10
12秒前
12秒前
Carolyn应助科研通管家采纳,获得10
12秒前
Jaikaran应助科研通管家采纳,获得10
12秒前
Jaikaran应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
Jaikaran应助科研通管家采纳,获得10
12秒前
打卡下班应助hugeyoung采纳,获得10
13秒前
小胖爱学习完成签到,获得积分10
13秒前
13秒前
15秒前
15秒前
17秒前
冰牛奶完成签到,获得积分10
19秒前
onestep完成签到,获得积分10
19秒前
ruilong发布了新的文献求助10
21秒前
顾矜应助胡锦久采纳,获得10
23秒前
XOERMIOY完成签到,获得积分10
24秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Ene—X Compounds (X = S, Se, Te, N, P) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4128131
求助须知:如何正确求助?哪些是违规求助? 3665407
关于积分的说明 11597631
捐赠科研通 3364477
什么是DOI,文献DOI怎么找? 1848794
邀请新用户注册赠送积分活动 912609
科研通“疑难数据库(出版商)”最低求助积分说明 828134