Histopathological bladder cancer gene mutation prediction with hierarchical deep multiple-instance learning

可解释性 突变 基因突变 基因 计算机科学 人工智能 深度学习 分割 计算生物学 生物 遗传学
作者
Rui Yan,Yijun Shen,Xueyuan Zhang,Peihang Xu,Jun Wang,Jintao Li,Fei Ren,Dingwei Ye,S. Kevin Zhou
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:87: 102824-102824 被引量:22
标识
DOI:10.1016/j.media.2023.102824
摘要

Gene mutation detection is usually carried out by molecular biological methods, which is expensive and has a long-time cycle. In contrast, pathological images are ubiquitous. If clinically significant gene mutations can be predicted only through pathological images, it will greatly promote the widespread use of gene mutation detection in clinical practice. However, current gene mutation prediction methods based on pathological images are ineffective because of the inability to identify mutated regions in gigapixel Whole Slide Image (WSI). To address this challenge, hereby we propose a carefully designed framework for WSI-based gene mutation prediction, which consists of three parts. (i) The first part of cancerous area segmentation, based on supervised learning, quickly filters out a large number of non-mutated regions; (ii) the second part of cancerous patch clustering, based on the representations derived from contrastive learning, ensures the comprehensiveness of patch selection; and (iii) the third part of mutation classification, based on the proposed hierarchical deep multi-instance learning method (HDMIL), ensures that sufficient patches are considered and inaccurate selections are ignored. In addition, benefiting from a two-stage attention mechanism in HDMIL, the patches that are highly correlated with gene mutations can be identified. This interpretability can help a pathologist to analyze the correlation between gene mutation and histopathological morphology. Experimental results demonstrate that the proposed gene mutation prediction framework significantly outperforms the state-of-the-art methods. In the TCGA bladder cancer dataset, five clinically relevant gene mutations are well predicted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
硕大的眼完成签到,获得积分20
刚刚
XianyunWang发布了新的文献求助10
刚刚
华仔应助甜叶菊采纳,获得10
刚刚
qcl应助猪猪女孩采纳,获得10
1秒前
香蕉觅云应助enen采纳,获得10
1秒前
科研通AI5应助你说什么采纳,获得10
1秒前
星辰大海应助豚鼠儿采纳,获得30
2秒前
2秒前
2秒前
3秒前
3秒前
xff完成签到 ,获得积分10
3秒前
隐形曼青应助花城采纳,获得10
3秒前
hyhyhyhy发布了新的文献求助10
4秒前
虚拟的冰淇淋完成签到,获得积分10
4秒前
乐宝完成签到,获得积分10
4秒前
小颜完成签到,获得积分20
5秒前
JIAca发布了新的文献求助10
5秒前
乐乐应助wwx采纳,获得10
6秒前
所所应助恬227采纳,获得10
7秒前
钇点点发布了新的文献求助10
7秒前
cookie发布了新的文献求助10
8秒前
8秒前
9秒前
dyx完成签到,获得积分20
10秒前
XianyunWang完成签到,获得积分10
11秒前
彭于晏应助nan采纳,获得10
11秒前
11秒前
花城完成签到,获得积分10
11秒前
rioo发布了新的文献求助10
11秒前
12秒前
12秒前
周桐发布了新的文献求助20
12秒前
顾矜应助阿威啊威采纳,获得10
13秒前
郭漂亮完成签到 ,获得积分10
13秒前
6666发布了新的文献求助10
13秒前
13秒前
14秒前
机智的觅风完成签到,获得积分10
14秒前
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813761
求助须知:如何正确求助?哪些是违规求助? 3358153
关于积分的说明 10392200
捐赠科研通 3075499
什么是DOI,文献DOI怎么找? 1689310
邀请新用户注册赠送积分活动 812665
科研通“疑难数据库(出版商)”最低求助积分说明 767350