A subregion-based prediction model for local–regional recurrence risk in head and neck squamous cell carcinoma

头颈部鳞状细胞癌 头颈部 基底细胞 头颈部癌 医学 放射科 肿瘤科 内科学 癌症 外科
作者
Ziqi Pan,Kuo Men,Bin Liang,Zhiyue Song,Runye Wu,Jianrong Dai
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:184: 109684-109684 被引量:17
标识
DOI:10.1016/j.radonc.2023.109684
摘要

Given that the intratumoral heterogeneity of head and neck squamous cell carcinoma may be related to the local control rate of radiotherapy, the aim of this study was to construct a subregion-based model that can predict the risk of local-regional recurrence, and to quantitatively assess the relative contribution of subregions.The CT images, PET images, dose images and GTVs of 228 patients with head and neck squamous cell carcinoma from four different institutions of the The Cancer Imaging Archive(TCIA) were included in the study. Using a supervoxel segmentation algorithm called maskSLIC to generate individual-level subregions. After extracting 1781 radiomics and 1767 dosiomics features from subregions, an attention-based multiple instance risk prediction model (MIR) was established. The GTV model was developed based on the whole tumour area and was used to compare the prediction performance with the MIR model. Furthermore, the MIR-Clinical model was constructed by integrating the MIR model with clinical factors. Subregional analysis was carried out through the Wilcoxon test to find the differential radiomic features between the highest and lowest weighted subregions.Compared with the GTV model, the C-index of MIR model was significantly increased from 0.624 to 0.721(Wilcoxon test, p value < 0.0001). When MIR model was combined with clinical factors, the C-index was further increased to 0.766. Subregional analysis showed that for LR patients, the top three differential radiomic features between the highest and lowest weighted subregions were GLRLM_ShortRunHighGrayLevelEmphasis, GRLM_HghGrayLevelRunEmphasis and GLRLM_LongRunHighGrayLevelEmphasis.This study developed a subregion-based model that can predict the risk of local-regional recurrence and quantitatively assess relevant subregions, which may provide technical support for the precision radiotherapy in head and neck squamous cell carcinoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助guozizi采纳,获得30
刚刚
刚刚
1秒前
甄凤元完成签到,获得积分10
1秒前
多吃青菜关注了科研通微信公众号
1秒前
1秒前
要温柔发布了新的文献求助10
1秒前
打打应助jjqqqj采纳,获得30
1秒前
scfsl完成签到,获得积分10
1秒前
安妮完成签到,获得积分20
2秒前
2秒前
lsx发布了新的文献求助10
3秒前
心木完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
科目三应助jl采纳,获得10
4秒前
安一完成签到,获得积分10
5秒前
图灵桑发布了新的文献求助10
5秒前
木mao完成签到,获得积分10
5秒前
5秒前
5秒前
火星上稀完成签到 ,获得积分10
6秒前
7秒前
英姑应助陶菊苏月采纳,获得10
7秒前
8秒前
甄凤元发布了新的文献求助10
8秒前
8秒前
乐乐应助古月采纳,获得10
9秒前
riverlove7完成签到,获得积分10
9秒前
9秒前
lan完成签到,获得积分10
9秒前
ZXT完成签到 ,获得积分10
10秒前
Ava应助ACEmeng采纳,获得10
10秒前
11秒前
tesla发布了新的文献求助10
11秒前
菜鸟勇闯完成签到,获得积分20
12秒前
古月发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4384951
求助须知:如何正确求助?哪些是违规求助? 3877937
关于积分的说明 12080577
捐赠科研通 3521425
什么是DOI,文献DOI怎么找? 1932484
邀请新用户注册赠送积分活动 973703
科研通“疑难数据库(出版商)”最低求助积分说明 871939