合成孔径雷达
恒虚警率
计算机科学
目标检测
人工智能
逆合成孔径雷达
探测器
假警报
雷达成像
计算机视觉
功能(生物学)
模式识别(心理学)
雷达
电信
进化生物学
生物
作者
Ning Wang,Yinghua Wang,Tiangu Tang,Hongwei Liu,Qunsheng Zuo
标识
DOI:10.1109/radar53847.2021.10028569
摘要
Target detection has been a hot topic in the field of synthetic aperture radar (SAR) image analysis. In this paper, the one-stage object detector EfficientDet is applied in the SAR target detection. Since the labeled SAR data is limited and the SAR scene contains only a small number of target areas, the imbalance problem between positive and negative samples is serious in the network training process. To solve this problem, we introduce the Average-Precision Loss (AP-Loss) into the loss function of the class prediction net of EfficientDet. In addition, we integrate the binary indicator map obtained by the two-parameter constant false alarm rate (CFAR) detection into EfficientDet to guide the generation process of anchors. The experimental results on the miniSAR data demonstrate the effectiveness of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI