Learning Oriented Object Detection via Naive Geometric Computing

计算机科学 人工智能 对象(语法) 计算机视觉
作者
Yanjie Wang,Zhijun Zhang,Wenhui Xu,Liqun Chen,Guodong Wang,Luxin Yan,Sheng Zhong,Xu Zou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (8): 10513-10525 被引量:12
标识
DOI:10.1109/tnnls.2023.3242323
摘要

Detecting oriented objects along with estimating their rotation information is one crucial step for image analysis, especially for remote sensing images. Despite that many methods proposed recently have achieved remarkable performance, most of them directly learn to predict object directions under the supervision of only one (e.g., the rotation angle) or a few (e.g., several coordinates) groundtruth (GT) values individually. Oriented object detection would be more accurate and robust if extra constraints, with respect to proposal and rotation information regression, are adopted for joint supervision during training. To this end, we propose a mechanism that simultaneously learns the regression of horizontal proposals, oriented proposals, and rotation angles of objects in a consistent manner, via naive geometric computing, as one additional steady constraint . An oriented center prior guided label assignment strategy is proposed for further enhancing the quality of proposals, yielding better performance. Extensive experiments on six datasets demonstrate the model equipped with our idea significantly outperforms the baseline by a large margin and several new state-of-the-art results are achieved without any extra computational burden during inference. Our proposed idea is simple and intuitive that can be readily implemented. Source codes are publicly available at: https://github.com/wangWilson/CGCDet.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助fixit采纳,获得10
刚刚
英俊的铭应助小曹采纳,获得10
刚刚
刘佳敏完成签到 ,获得积分10
刚刚
uu完成签到 ,获得积分20
1秒前
1秒前
LL发布了新的文献求助10
1秒前
1秒前
初初见你完成签到,获得积分10
1秒前
科研通AI5应助msuyue采纳,获得30
2秒前
城南完成签到,获得积分20
3秒前
科研通AI5应助自然宫苴采纳,获得10
3秒前
槑塞呆呆完成签到 ,获得积分10
4秒前
Alex应助TTiger007采纳,获得30
5秒前
砚行书完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
冷静的无颜完成签到 ,获得积分10
6秒前
chaser完成签到,获得积分10
7秒前
8秒前
科研通AI5应助李俊枫采纳,获得10
8秒前
大模型应助土豪的梦山采纳,获得10
9秒前
ziyu发布了新的文献求助10
10秒前
zzzh发布了新的文献求助10
11秒前
11秒前
清风明月发布了新的文献求助10
12秒前
12秒前
12秒前
dd发布了新的文献求助10
13秒前
13秒前
lulu发布了新的文献求助10
15秒前
共享精神应助LL采纳,获得10
15秒前
科研通AI5应助小刘采纳,获得10
15秒前
zz给zz的求助进行了留言
16秒前
16秒前
16秒前
斯文败类应助必然采纳,获得10
17秒前
冰魂应助111采纳,获得20
17秒前
my驳回了Akim应助
18秒前
烟花应助蒲蒲采纳,获得10
18秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842060
求助须知:如何正确求助?哪些是违规求助? 3384246
关于积分的说明 10533237
捐赠科研通 3104526
什么是DOI,文献DOI怎么找? 1709680
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773957