Biosensors for detection of paralytic shellfish toxins: Recognition elements and transduction technologies

适体 麻痹性贝类中毒 生物传感器 海洋毒素 生物 贝类 生化工程 渔业 毒素 微生物学 生物化学 分子生物学 水生动物 工程类
作者
Liu-Na Wei,Lin Luo,Bingzhi Wang,Hongtao Lei,Tian Guan,Yu‐Dong Shen,Hong Wang,Zhenlin Xu
出处
期刊:Trends in Food Science and Technology [Elsevier BV]
卷期号:133: 205-218 被引量:19
标识
DOI:10.1016/j.tifs.2023.02.012
摘要

Paralytic shellfish toxins (PSTs) are biotoxins derived from harmful algal blooms and cause paralytic shellfish poisoning (PSP). PSTs are widely found in natural waters, indicating that they can cause human death through food chain and economic losses of aquatic species worldwide. Therefore, accurate, sensitive, and efficient methods are needed for the detection of PSTs in the environment and food. Biosensor is one of the fastest-growing detection methods since they are simple, sensitive, portable, and efficient for real-time or near real-time analyses. This article provides a comprehensive review of PSTs biosensors by highlighting different signaling mechanisms (electrochemical, optical, etc.). Typically, the effects of the generation of bio-recognition elements on PSTs sensing performance to expand new biosensors applications which were highlighted. Although mouse bioassay and HPLC are the current methods used for PSTs detection, biosensor could become an alternative method for PSTs detection in the future. Although antibodies are the most popular affinity-based recognition elements, aptamers have been rapidly developed in recent years to mimic antibodies. As a result, biosensor detection of PSTs mainly focuses on electrochemical and optical signal transduction. Nonetheless, robust, accurate, and portable biosensors are needed for real application and commercialization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大条完成签到 ,获得积分10
1秒前
火星上以柳完成签到,获得积分10
3秒前
5秒前
成就的乘云完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
gb发布了新的文献求助10
7秒前
阿银完成签到 ,获得积分10
8秒前
gg完成签到,获得积分10
9秒前
大条关注了科研通微信公众号
10秒前
11秒前
12秒前
gg发布了新的文献求助10
13秒前
17秒前
Cheng_Y完成签到,获得积分20
17秒前
zzzz完成签到 ,获得积分10
18秒前
19秒前
21秒前
科研通AI2S应助gb采纳,获得10
21秒前
21秒前
22秒前
苹果惜梦完成签到,获得积分20
24秒前
24秒前
wanci应助桃李春风一杯酒采纳,获得10
24秒前
zzww发布了新的文献求助10
24秒前
醉还觞发布了新的文献求助10
25秒前
25秒前
26秒前
满怀发布了新的文献求助10
26秒前
Yfufu发布了新的文献求助50
26秒前
29秒前
29秒前
32秒前
FashionBoy应助小景007采纳,获得10
32秒前
34秒前
duang发布了新的文献求助10
34秒前
Xingyu_Jiang发布了新的文献求助10
37秒前
39秒前
韩军军完成签到 ,获得积分20
40秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839884
求助须知:如何正确求助?哪些是违规求助? 3382134
关于积分的说明 10521516
捐赠科研通 3101562
什么是DOI,文献DOI怎么找? 1708143
邀请新用户注册赠送积分活动 822228
科研通“疑难数据库(出版商)”最低求助积分说明 773208