亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised Visual Representation Learning Based on Segmentation of Geometric Pseudo-Shapes for Transformer-Based Medical Tasks

计算机科学 人工智能 特征学习 分割 卷积神经网络 模式识别(心理学) 嵌入 过度拟合 变压器 图像分割 医学影像学 深度学习 无监督学习 机器学习 人工神经网络 物理 量子力学 电压
作者
Thanaporn Viriyasaranon,Sang Myung Woo,Jang‐Hwan Choi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 2003-2014 被引量:3
标识
DOI:10.1109/jbhi.2023.3237596
摘要

Recently, transformer-based architectures have been shown to outperform classic convolutional architectures and have rapidly been established as state-of-the-art models for many medical vision tasks. Their superior performance can be explained by their ability to capture long-range dependencies of their multi-head self-attention mechanism. However, they tend to overfit on small- or even medium-sized datasets because of their weak inductive bias. As a result, they require massive, labeled datasets, which are expensive to obtain, especially in the medical domain. This motivated us to explore unsupervised semantic feature learning without any form of annotation. In this work, we aimed to learn semantic features in a self-supervised manner by training transformer-based models to segment the numerical signals of geometric shapes inserted on original computed tomography (CT) images. Moreover, we developed a Convolutional Pyramid vision Transformer (CPT) that leverages multi-kernel convolutional patch embedding and local spatial reduction in each of its layer to generate multi-scale features, capture local information, and reduce computational cost. Using these approaches, we were able to noticeably outperformed state-of-the-art deep learning-based segmentation or classification models of liver cancer CT datasets of 5,237 patients, the pancreatic cancer CT datasets of 6,063 patients, and breast cancer MRI dataset of 127 patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
baobeikk完成签到,获得积分10
刚刚
cc完成签到 ,获得积分10
2秒前
3秒前
NexusExplorer应助juju采纳,获得10
6秒前
高高哑铃发布了新的文献求助10
6秒前
14秒前
南宫士晋完成签到 ,获得积分10
14秒前
高高哑铃完成签到,获得积分10
15秒前
司徒寒烟发布了新的文献求助10
15秒前
YifanWang应助潇潇雨歇采纳,获得10
17秒前
结实初翠发布了新的文献求助10
19秒前
YifanWang应助潇潇雨歇采纳,获得10
28秒前
完美世界应助彻底的采纳,获得10
32秒前
33秒前
34秒前
bkagyin应助科研通管家采纳,获得10
34秒前
上官若男应助科研通管家采纳,获得10
34秒前
小二郎应助科研通管家采纳,获得150
34秒前
34秒前
yyt发布了新的文献求助10
38秒前
丘比特应助iu1392采纳,获得10
38秒前
简单发布了新的文献求助10
40秒前
47秒前
爆米花应助结实初翠采纳,获得10
48秒前
飞飞飞fff完成签到 ,获得积分10
52秒前
52秒前
YifanWang应助潇潇雨歇采纳,获得10
53秒前
朴素乐菱完成签到,获得积分10
54秒前
追寻奇迹完成签到 ,获得积分10
54秒前
automan发布了新的文献求助10
57秒前
完美世界应助yyt采纳,获得100
57秒前
1分钟前
小小飞xxf完成签到 ,获得积分10
1分钟前
和谐蛋蛋完成签到,获得积分10
1分钟前
Perion完成签到 ,获得积分10
1分钟前
iu1392发布了新的文献求助10
1分钟前
automan完成签到,获得积分10
1分钟前
风一样的我完成签到,获得积分10
1分钟前
YifanWang应助潇潇雨歇采纳,获得10
1分钟前
LELE完成签到 ,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798450
求助须知:如何正确求助?哪些是违规求助? 3343873
关于积分的说明 10317894
捐赠科研通 3060562
什么是DOI,文献DOI怎么找? 1679588
邀请新用户注册赠送积分活动 806729
科研通“疑难数据库(出版商)”最低求助积分说明 763296