Deep Learning–based Approach to Predict Pulmonary Function at Chest CT

医学 肺活量 肺活量测定 肺功能测试 一致性 试验装置 肺容积 介绍 核医学 内科学 肺功能 物理疗法 统计 扩散能力 哮喘 数学 家庭医学
作者
Hyunjung Park,Jihye Yun,Sang Min Lee,Hye Jeon Hwang,Joon Beom Seo,Young Ju Jung,Jeongeun Hwang,Se Hee Lee,Sei Won Lee,Namkug Kim
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (2) 被引量:14
标识
DOI:10.1148/radiol.221488
摘要

Background Low-dose chest CT screening is recommended for smokers with the potential for lung function abnormality, but its role in predicting lung function remains unclear. Purpose To develop a deep learning algorithm to predict pulmonary function with low-dose CT images in participants using health screening services. Materials and Methods In this retrospective study, participants underwent health screening with same-day low-dose CT and pulmonary function testing with spirometry at a university affiliated tertiary referral general hospital between January 2015 and December 2018. The data set was split into a development set (model training, validation, and internal test sets) and temporally independent test set according to first visit year. A convolutional neural network was trained to predict the forced expiratory volume in the first second of expiration (FEV1) and forced vital capacity (FVC) from low-dose CT. The mean absolute error and concordance correlation coefficient (CCC) were used to evaluate agreement between spirometry as the reference standard and deep-learning prediction as the index test. FVC and FEV1 percent predicted (hereafter, FVC% and FEV1%) values less than 80% and percent of FVC exhaled in first second (hereafter, FEV1/FVC) less than 70% were used to classify participants at high risk. Results A total of 16 148 participants were included (mean age, 55 years ± 10 [SD]; 10 981 men) and divided into a development set (n = 13 428) and temporally independent test set (n = 2720). In the temporally independent test set, the mean absolute error and CCC were 0.22 L and 0.94, respectively, for FVC and 0.22 L and 0.91 for FEV1. For the prediction of the respiratory high-risk group, FVC%, FEV1%, and FEV1/FVC had respective accuracies of 89.6% (2436 of 2720 participants; 95% CI: 88.4, 90.7), 85.9% (2337 of 2720 participants; 95% CI: 84.6, 87.2), and 90.2% (2453 of 2720 participants; 95% CI: 89.1, 91.3) in the same testing data set. The sensitivities were 61.6% (242 of 393 participants; 95% CI: 59.7, 63.4), 46.9% (226 of 482 participants; 95% CI: 45.0, 48.8), and 36.1% (91 of 252 participants; 95% CI: 34.3, 37.9), respectively. Conclusion A deep learning model applied to volumetric chest CT predicted pulmonary function with relatively good performance. © RSNA, 2023 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
自由的雁完成签到 ,获得积分10
2秒前
bai完成签到 ,获得积分10
3秒前
陈晨完成签到,获得积分10
5秒前
鱼柒完成签到 ,获得积分10
6秒前
Dannnn发布了新的文献求助10
6秒前
缓慢的豌豆完成签到 ,获得积分10
6秒前
白兰鸽发布了新的文献求助10
6秒前
7秒前
Re完成签到 ,获得积分10
7秒前
嘞是举仔发布了新的文献求助20
8秒前
1111完成签到 ,获得积分10
8秒前
小文完成签到 ,获得积分10
9秒前
铲铲完成签到,获得积分10
9秒前
10秒前
陈晨发布了新的文献求助10
11秒前
11秒前
乔心发布了新的文献求助10
14秒前
14秒前
Zyan发布了新的文献求助10
15秒前
你好完成签到,获得积分10
16秒前
哈哈完成签到,获得积分10
16秒前
今后应助等你下课采纳,获得10
19秒前
平淡雪枫完成签到 ,获得积分10
21秒前
Leif应助乔心采纳,获得10
22秒前
英俊的铭应助乔心采纳,获得10
22秒前
23秒前
闲着也是闲着完成签到 ,获得积分10
23秒前
26秒前
27秒前
花花发布了新的文献求助10
27秒前
albertchan完成签到,获得积分10
28秒前
28秒前
等你下课发布了新的文献求助10
32秒前
啊啊啊发布了新的文献求助10
34秒前
搞怪的白云完成签到 ,获得积分10
35秒前
big龙发布了新的文献求助30
36秒前
tRNA完成签到,获得积分10
37秒前
研究水合物的小白完成签到 ,获得积分10
40秒前
Linco完成签到 ,获得积分10
40秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799070
求助须知:如何正确求助?哪些是违规求助? 3344776
关于积分的说明 10321432
捐赠科研通 3061226
什么是DOI,文献DOI怎么找? 1680094
邀请新用户注册赠送积分活动 806899
科研通“疑难数据库(出版商)”最低求助积分说明 763445