A Systematic Review on Imbalanced Learning Methods in Intelligent Fault Diagnosis

断层(地质) 过程(计算) 计算机科学 领域(数学) 人工智能 机器学习 集合(抽象数据类型) 数据处理 数据挖掘 工程类 数学 地震学 纯数学 程序设计语言 地质学 操作系统
作者
Zhijun Ren,Tantao Lin,Ke Feng,Yongsheng Zhu,Zheng Liu,Ke Yan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-35 被引量:76
标识
DOI:10.1109/tim.2023.3246470
摘要

The theoretical developments of data -driven fault diagnosis methods have yielded fruitful achievements and significantly benefited industry practices. However, most methods are developed based on the assumption of data balance, which is incompatible with engineering scenarios. First, the normal state accounts for the majority of the equipment’s lifespan; second, the probability of various faults varies, both of which result in an imbalance in the data. The consequence of data imbalance in intelligent fault diagnosis methods has attracted extensive attention from the research community, and a significant number of papers have been published. Nevertheless, a comprehensive review of achievements in this field is still missing, and the research perspectives have not been thoroughly investigated. To end this, we review and discuss all the research achievements in fault diagnosis under data imbalance in this survey, based on to the best of our knowledge. First, the existing imbalanced learning methods are classified into three categories: data processing methods, model construction methods, and training optimization methods. Then, the three methodologies are introduced and discussed in detail: the data processing method is to optimize the inputs of the intelligent fault diagnosis model so that the imbalance rate of the sample set involved in training is reduced; the model construction method is to design the structure and the features of the intelligent fault diagnosis model so that the model itself is resistant to the effects of imbalance; the training optimization method is an optimization of the training process for intelligent fault diagnosis models, raising the importance of the minority class in the training. Finally, this survey summarizes the prospects of the imbalanced learning problem in intelligent fault diagnosis, discusses the possible solutions, and provides some recommendations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
4秒前
科目三应助Kiki采纳,获得10
4秒前
李伍各发布了新的文献求助10
5秒前
7秒前
7秒前
赵凤文完成签到,获得积分10
8秒前
斯文败类应助帅气的宛凝采纳,获得10
12秒前
13秒前
00发布了新的文献求助10
14秒前
woshixiannv完成签到,获得积分10
14秒前
天天快乐应助外向访卉采纳,获得10
15秒前
Echo发布了新的文献求助10
18秒前
Amon完成签到 ,获得积分10
19秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
FXP应助科研通管家采纳,获得10
20秒前
今后应助科研通管家采纳,获得10
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
20秒前
oxear应助科研通管家采纳,获得10
20秒前
20秒前
酷炫迎波完成签到,获得积分10
20秒前
24秒前
Akim应助Abby采纳,获得10
24秒前
25秒前
25秒前
外向访卉发布了新的文献求助10
28秒前
wali完成签到 ,获得积分0
31秒前
笨笨豌豆完成签到 ,获得积分10
32秒前
阿花发布了新的文献求助10
32秒前
33秒前
33秒前
Yucorn完成签到 ,获得积分10
34秒前
37秒前
歆琉发布了新的文献求助10
37秒前
不吃番茄完成签到,获得积分10
38秒前
机智冬灵发布了新的文献求助10
39秒前
科研通AI5应助tree采纳,获得10
39秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839912
求助须知:如何正确求助?哪些是违规求助? 3382151
关于积分的说明 10521568
捐赠科研通 3101604
什么是DOI,文献DOI怎么找? 1708153
邀请新用户注册赠送积分活动 822237
科研通“疑难数据库(出版商)”最低求助积分说明 773223